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These notes derive a system size expansion and approximate equation for the evolution of means
and covariances of a single-compartment neural mass model with Quiescent (Q), Active (A), and
Refractory (R) states. The derivations here are identical to the standard ones for the Susceptible
(S), Infected (I), and Recovered (R) (SIR) model commonly used in epidemiology.

Normally, in the system-size expansion we take the number of neurons N to be large. In this case
we can expand the master equation in terms of the state change for a single-neuron, which is a
small parameter O(1/N).

But, re-scaling the equations by the system size N only complicates the notation. It is equivalent
to take the expansion in terms of a single neuron. This isO(1), but we understand that as N grows
large it becomes increasingly accurate relative to the size of the total population.

0.1 The system

Q
ρq−→ A

Q + A
ρe−→ A + A

A
ρa−→ R

R
ρr−→ Q

In retinal waves, the spontaneous reaction Q
ρq−→ A is rare. It is poorly modeled by a mean-field

approach. Instead, we treat this reaction separately as an external input (Poisson a.k.a. shot noise).

0.2 Kramers-Moyal expansion

Consider the non-spatial case for illustration. The allowed transitions of the neural population can
be described in terms of a master equations. For review, the possible reactions include creation
and annihilation of cells to and from the Quiescent (Q), Active (A), and Refractory (R) states

∂t Pr(Q, A, R) = Pr(Q+1, A−1, R)ρe(A− 1)(Q + 1)
+ Pr(Q, A+1, R−1)ρa(A + 1)
+ Pr(Q−1, A, R+1)ρr(R + 1)
− Pr(Q, A, R) [ρe AQ + ρaA + ρrR]
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The terms, in order, reflect (1) Q + A → A + A transition into this state, (2) spontaneous A → R
transition into this state, (3) spontaneous R→ Q transition into this state, (4) the sum of all possible
transitions away from this state.

We approximate Pr(Q, A, R) as Gaussian and derive terms for the evolution of its mean and co-
variance by a second-order Taylor expansion of the master equation, parameterized by the system
size N, the number of interacting agents within a single well-mixed compartment. First, re-write
the steps in the master equation in terms of the system size N, explicitly. Q + A + R = N.

∂t Pr(Q, A, R) = Pr(S+1, A−1, R)ρe(A−1)(Q+1)
+ Pr(Q, A+1, R−1)ρa(A+1)
+ Pr(Q−1, A, R+1)ρr(R+1)
− Pr(Q, A, R) [ρeAQ + ρaA + ρrR]

Now, let ε(εq, εa, εr) be a Taylor expansion of the step operator (denoting the identity operator as
1). This represents the change in probability density Pr(Q, A, R) for an infinitesimal change in
intensity for the Q, A, R fields.

ε(εq, εa, εr) = 1 + εq∂Q + εa∂A + εr∂R

+ 1
2

(
ε2

q∂2
Q + ε2

a∂2
A + ε2

r∂2
R

)
+
(
εqεa∂Q∂A + εaεr∂A∂R + εrεq∂R∂Q

)
We can approximate the first three terms of the master equation in terms of this expansion (abbre-
viating Pr(Q, A, R) as P)

Pr(Q+1, A−1, R)ρe(A−1)(Q+1) ≈ ε (1,−1, 0) ρeAQP
Pr(Q, A+1, R−1)ρa(A+1) ≈ ε (0, 1,−1) ρaAP
Pr(Q−1, A, R+1)ρr(R+1) ≈ ε (−1, 0, 1) ρrRP

Substituting the Taylor approximations into the master equation (for brevity, let ρqa = ρeA. Note
that this depends on A and is not constant).

∂tP = ε (1,−1, 0) ρqaQP + ε (0, 1,−1) ρaAP + ε (−1, 0, 1) ρrRP−
[
ρqaQ + ρaA + ρrR

]
P

Regrouping terms and dividing by P, we get:

∂tP
P

= [ε (1,−1, 0)− 1] ρqaQ + [ε (0, 1,−1)− 1] ρaA + [ε (−1, 0, 1)− 1] ρrR

Substituting the definition of ε(εs, ε i, εr) and collecting terms leads to a second-order description
of the master equation, which can be interpreted as the drift and diffusion terms for the evolution
of the mean and the covariance of a multivariate Gaussian approximation of Pr(Q, A, R).

2



∂tP
P

=
[
(∂Q − ∂A) +

1
2

(
∂2

Q + ∂2
A − 2∂Q∂A

)]
ρqaQ

+
[
(∂A − ∂R) +

1
2

(
∂2

A + ∂2
R − 2∂A∂R

)]
ρaA

+
[
(∂R − ∂Q) +

1
2

(
∂2

R + ∂2
Q − 2∂R∂Q

)]
ρrR

The first and second order terms form the second-order expansion of the master equation yield
the drift and diffusion terms for a Fokker-Plank equation, respectively. Denote state (Q, A, R) as
x = (Q, A, R)

Collecting first-order terms yields a drift term µ(x)

−1
[
∂Q
[
ρrR− ρqaQ

]
+ ∂A

[
ρqaQ− ρaA

]
+ ∂R [ρaA− ρrR]

]

µ(x) =

ρrR−ρqa(A)Q
ρqa(A)Q−ρa A

ρa A−ρrR


Collecting second-order terms yields a diffusion term Σ(x)

1
2

(
∂2

Q
[
ρqaQ + ρrR

]
+ ∂2

A
[
ρaA + ρqaQ

]
+ ∂2

R [ρrR + ρaA] − 2
[
∂Q∂AρqaQ + ∂A∂RρaA + ∂R∂QρrR

])

Σ(x) =

ρqaQ + ρrR −ρqaQ −ρrR
−ρqaQ ρa A + ρqaQ −ρa A
−ρrR −ρa A ρrR + ρa A


The drift µ(x) and diffusion Σ(x) terms define a Fokker-Plank equation that can be used to prop-
agate a state-space model for the Q, A, R system forward in time:

∂t Pr(x) = −∑i ∂xi µi(x)Pr(x) + 1
2 ∑ij ∂2

xi ,xj
Σij(x)Pr(x)

0.3 Reformulating as a Langevin equation

x = (Q, A, R)

dx = µ(x)dt + Q(x)dW

Where Q is a matrix square root of Σ(x)

Q>Q = Σ(x),

for example
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Q(x) =

−√ρqaQ 0
√

ρrR√
ρqaQ −

√
ρaA 0

0
√

ρaA −
√

ρrR

 .

To normalize by the number of neurons, divide µ(x) and Q(x) by 1
N .

0.4 Moment closure

So far, we’ve used a system-size expansion to derive a diffusive approximation of the dynamics.
This can be used to simulate Pr(x) in time, as a partial differential equation. It can also be used to
sample trajectories from the model as a Langevin equation. We next discuss various approxima-
tions to the time evolution of the moments of the state distribution.

Using the drift and diffusion terms above directly gives the so-called linear noise approximation
(LNA) to the state-space dynamics. This uses the deterministic rate equations for the evolution of
the mean.

In state-space inference models, fluctuations cause the densities of quiescent and excitable neu-
rons to be anti-correlated. This has the effect of stabilizing the system, but is not captured in
the LNA. These can be captured at second order by treating the state distribution as Gaussian,
and neglecting higher cumulants. This is the so-called “cumulant neglect” or Gaussian moment
closure.

The time-evolution of the first moment is derived by taking the time derivative of the expected
values of the states over Pr(Q, A, R):

∂t 〈Q〉 = 〈∂tQ〉 =
〈
ρrR− ρqQ− ρeQA

〉
= ρr 〈R〉 − ρq 〈Q〉 − ρe 〈QA〉

∂t 〈A〉 = 〈∂t A〉 = ρq 〈Q〉+ ρe 〈QA〉 − ρa 〈A〉
∂t 〈R〉 = 〈∂tR〉 = ρa 〈A〉 − ρr 〈R〉

Note that the first moment couples to the second moment through pairwise interaction terms
〈QA〉.

The time evolution of the second moment, again, can be derived by taking the time derivative of
expectations 〈x1x2〉 where xi ∈ {Q, A, R}, for example 〈QA〉 or $〈AR〉 $ :

∂t 〈QA〉 = 〈∂tQA〉 = 〈Q∂t A〉+ 〈A∂tQ〉
=
〈

Q(QAρe + Qρq − Aρa)
〉
+
〈

A(−Rρr −QAρe −Qρq)
〉

= ρe 〈QQA〉+ ρq 〈QQ〉 − ρa 〈QA〉 − ρr 〈AR〉 − ρe 〈AQA〉 − ρq 〈AQ〉

∂t 〈AR〉 = 〈∂t AR〉 = 〈R∂t A〉+ 〈A∂tR〉
=
〈

R(QAρe + Qρq − Aρa)
〉
+ 〈A(Aρa − Rρr)〉

= ρe 〈QQA〉+ ρq 〈QQ〉 − ρa 〈QA〉 − ρr 〈AR〉 − ρe 〈AQA〉 − ρq 〈AQ〉

Gaussian moment closure makes the simplifying assumption that we can replace third-order
terms like 〈x1x1x2〉 with the values that one might expect if the state distribution is a Gaussian
with parameters given by the first two moments.
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