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These notes (pdf), along with the script plotting_helper.py, are available as an ipython notebook
on Github.

0.1 Polar and rectangular coordinates

Recall the rectangular z = x + iy and polar z = reiθ forms of a complex number.

0.2 Coloring the points in the complex plane

The two maps below are colored representations of the magnitude (left) and phase (right) in polar
coordinates. Observe that the phase rotates 2π around zero. To connect this to the analysis of poles
and zeros in our z-domain transfer function, we can think of these maps as coloring the identity
map. For example, it could be a z-domain transfer function of the form:

U(z) = z

This map has has one zero (at zero), and one pole (at infinity).

The way that phase behaves near 0 and ∞ in the identity map resembles the behavior of phase
around zeros and poles in more complicated s-domain and z-domain transfer functions. In the
identity map, going around the origin counterclockwise adds 2π to the phase. This is equivalent
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to encircling infinity clockwise. In a transfer function, each zero (pole) can be viewed as a shifted
(for poles: and inverted) version of the identity map.

This allows us to determine the # of poles - # zeros by taking a closed contour integral in the
complex plane, which can help us assess the stability of a sytem. For example, in continuous time
we need there to be no poles in the right half plane. In discrete time, we need to check that there
are no poles outside the unit circle.

This follows from Cauchy’s argument principle and is important intution for understanding the
Nyquist stability criterion in both the continuous (s-domain) and discrete (z-domain). However,
we do not need to go through the proof of the argument principle to understand it intuitively.

1 Maps in the complex plane

By coloring points in the complex plane, we can visualize functions from C→ C

1.1 A shift by 1 (zero at -1)

Note that the 2π phase rotation around the zero, located at -1
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1.2 Squaring (two zeros at zero)

Note that the phase rotation doubles, and is now 4π rather than 2π around zero.

1.3 Inverting (pole at 0)

Note that the phase rotation has reversed.

<ipython-input-7-d79fdb1d4025>:1: RuntimeWarning: divide by zero encountered in

true_divide

phase_magnitude_figure(1/z);

<ipython-input-7-d79fdb1d4025>:1: RuntimeWarning: invalid value encountered in
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true_divide

phase_magnitude_figure(1/z);

2 Let’s make an unstable conjugate pair z-domain transfer function

U(z) =
1

(1 + αeiπ/4z−1)(1 + αe−iπ/4z−1)
, α < 1
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2.1 Phase rotation vanishes around regions that contain equal # zeros and poles

5



2.1.1 Poles and zeros cancelling inside unit circle: Bode and Nyquist plots

3 Phase and magnitude together

We can plot the output of a function as a shaded color, where the hue represents the phase and
the brightness the absolute magnitude. (We’ll use this in a bit to visualize transormation in the
complex plan in a single plot)
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3.0.1 Just for fun: Fractals as iterated polynomial maps

Just for fun: the iterated map zn = z2
n + c can generate Julia set fractals. Here’s an example for

c = −0.81 + 0.05i, iterated 7 times.
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4 Approximate conversions from Laplace to Z domain

4.0.1 Forward

z = esT ≈ 1 + sT ⇒ sT ≈ z− 1

4.0.2 Backward

1/z = e−sT ≈ 1− sT ⇒ sT ≈ z− 1
z

4.0.3 Tustin/Bilinear

z =
e

1
2 sT

e−
1
2 sT
≈

1 + 1
2 sT

1− 1
2 sT
⇒ sT ≈ 2

z− 1
z + 1

4.1 Applying each of these transformations in the complex plane. . .

4.2 Applied to a Laplace domain transfer function w. two conjugate pair poles

• All transfomations introduce some error
• Forward Euler can be unstable
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• Backward Euler
– Maps the point at ∞ to 0
– Preserves stability
– Can distort frequences and phase response

• Tustin transformation
– Maps the point at ∞ to -1
– Preserves stability
– Can distort frequences and phase responses

• Transforming poles and zeros
– Poorly approximates the linear time-invariant frequency response

4.3 Comparing frequency domain responses

Note that, even through the system attained via forward Euler is unstable, it still appears to have
a reasonable frequency response. This is because we cannot tell whether the poles are inside
or outside the unit circle from the frequency response alone, and highlights the importance of
checking the stability before interpreting freqeuency reponse plots.

( In these plots, we use an arbitrary (normalized) frequency, and set the sampling rate of the
discrete system to be twice this unit frequency (T=0.5) )
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4.4 Extra example 1

10−4z3

(z− 1)(1.15z2 − 2.05z + 1)
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4.5 Extra example 2

1
z2(z− 1)
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