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Some people have asked me if there is a faster way to draw z-domain Bode and Nyquist plots by
hand. I’m told that you will not be asked to draw these by hand on the exam, but you may be
asked to reason about them or to match a transfer function with a plot provided.

Here is my strategy: To evaluate a z-domain transfer function on the unit circle, consider these
tricks

1. Recognize familiar forms
2. Check some easy points: ±1, i, etc.
3. Break down into a product of simpler or familiar components. In log-magnitude and phase,

product of components becomes addition (easy!)
4. Look for convenient structure and symmetries in the algebra. 2 cos θ = eiθ + e−iθ is handy!
5. Get the poles and zeros, and look for convenient geometric relationships (draw some trian-

gles)
6. If that fails, note that:

• Phase is the sum/difference of the angles to zeros/poles
• Magnitude is the product of the distance (inverse distance) to zeros (poles)
• These can be solved algebraically (but look for shortcuts in the algebra and geometry)

0.0.1 1. Recognize familiar forms

Is the transfer function one you’ve already seen in the example sheets or past exams? Can it be
decomposed into a product of familiar functions? Is it a known function multiplied by additional
poles/zeros at zero (e.g. times z−1)? Avoiding work by pattern matching is nice ( :

0.0.2 2. Evaluate easy points first

The points z = 1 = e0i, and z = −1 = eπi are easy to compute by hand. These tell you the
phase and the magnitude of the DC component and the Nyquist frequency, respectively. The

point z = i = e
π
2 i is also quick to evaluate, and may help in sketching the overall curve.

0.0.3 3. Look for familiar pieces

Problems will often have some structure and symmetries that might help reduce a transfer func-
tion to simpler, known functions, and more familiar filters, etc. Remember, we’re trying to get the
phase and the magnitude, which are easy to combine by multiplication. If we know the phase and
magnitude for some sub-components, we can estimate the overall phase and magnitude easily.
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0.0.4 4. Is there something convenient in the algebra?

In the example sheets, we saw that the relationship 2 cos θ = eiθ + e−iθ is quite useful for separating
phase and magnitude components! Can you re-arrange the equation, pull out factors of eθ/2, etc,
to make something more familiar?

0.0.5 5. Geometric intuition: draw the poles and zeros in the complex plane

Sometimes, a geometric intuition is useful. Recall that the phase, as we move z along the unit
circle z = eiθ , is given by the sum of all phase contributions from poles and zeros. Similarly, the
magnitude is the product of the distances to the zeros and 1/distances to the poles. Sometimes,
nice geometric relationships appear that make it quick to solve for the phase and magnitude. You
may be able to solve for certain values by looking at the angles triangles made by drawing vectors
between zeros, poles, the origin, and an example point on the unit circle.

0.0.6 Evaluate algebraically

If all else fails, its possible to “roll up our sleeves” and evaulate the transfer function by hand
by breaking the transfer function into zeros and poles, and considering the contribution of each.
Look for algebra tricks and geometric intuition to accelerate this, along the way, however.

Z-domain transfer functions are a product of simpler poles and zeros For plotting the Bode
and Nyquist plots, we evaluate the z-transform along the unit circle z = eiθ . We are interested
in getting the phase (φ) and magnitude (ρ) of the z-transform evaluated at these points, i.e. for
Y(eiθ) = ρeiφ A given transfer function can be decomposed into a product of poles and zeros:

Y(z) = ∏l(1− qlz−1)

∏m(1− pmz−1)

Multiplying complex numbers in polar form is easy Note that multiplying complex numbers
in polar coordinates is fairly straightforward

ρ1eiφ1 · ρ2eiφ2 = (ρ1ρ2)ei(φ1+φ2)

It’s even easier if we consider log-magnitude log(ρ), which is used in a typical Bode plot, since
the multiplication of the magnitudes becomes addition:

eln ρ1 eiφ1 · eln ρ2 eiφ2 = eln ρ1+ln ρ2 ei(φ1+φ2)

So! If we can break a complicated z-transform into its zeros and poles, we can figure out the
overall phase by summing up each phase and log-magnitude contribution. If we were drawing
a Bode plot, we could draw the plot of each zero and pole separately in the log-magnitude and
phase plots, and then sum them up to get the final answer.

Therefore, it is enough to consider the behavior of a single zero or pole along the circle z = eiθ . If
we can predict the phase and log-magnitude of this, we can handle any general z-domain transfer
function.
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Poles are just 1/zero Inverting complex numbers is simple in polar coordinates:

1
ρeiφ =

1
ρ

e−iφ

Since a pole is, conceptually, the inverse of a zero, we can consider just the case of finding the
Bode or Nyquist diagram for zeros. In the case of poles, we can consider the (1− pz−1) term as if
it were a zero, then invert it (as above) to get its contribution to the overall plot.

So! We’ve reduced the problem to quickly determining the Bode/Nyquist diagrams for a single
term, (1− qz−1).

Evaluating 1− qz−1 along the unit circle z = eiφ Is there a simple way to evaluate 1− qz−1 along
the unit circle z = eiφ? For me, I find it simpler to re-write the expression 1− qz−1 as (z− q)z−1.

1− qe−iθ = (eiθ − q) · eiθ

The term z−1 = e−iθ is already in polar form, so we just need to find a polar form for z− q. This is
a difference between two complex numbers.

The distance between two complex numbers The magnitude of z − q is just the distance be-
tween z = eiθ and q = reiψ. It might be easier to solve this by examining the geometry of the
pole-zero plot. If that fails, it can be calculated by hand. The usual Cartesian distance formula
may be useful. Distance can also be calculated from the polar representation:

z = xz + iyz

q = xq + iyq

|z− q|2 = (xz − xq)
2 + (yz − yq)

2

= x2
z + x2

q + y2
z + y2

q − 2xzxq − 2yzyq

= |z|2 + |q|2 − 2(xzxq + yzyq)

= 1 + r2 − 2r[cos θ cos ψ + sin θ sin ψ]

= 1 + r2 − 2r cos(θ − ψ)

Take the square root of the above gives |z− q|.

In general, the squared distance between two complex numbers, in polar coordinates, can be re-
membered as: the sum of the squared magnitudes, minus twice the product of their magnitudes
with the cosine of their phase difference (i.e. twice their dot-product, if these were 2D vectors). It
might just be easier to work through the Cartesian form though!

The angle between two complex numbers The phase of z− q is the angle of a line drawn from
q to z. The fastest way to do this is to first check if there is some geometric intuition, and see if
the angle can be found via trigonometry. Some points like q = 1 or q = i might have convenient
relationships that bypass difficult math. Also look for convenient structure in the algebra, which
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might be faster than applying memorized formulas. If all else fails, you can solve directly for the
phase:

∠(z− q) = −i log
(

z− q
|z− q|

)
+ 2πn, n ∈ Z

1 In summary:

Try to use the big picture and pattern matching to be as lazy as possible. See if the problem can
be reduced to simpler and familiar forms, and see if there are some convenient algebraic tricks or
geometric intuition to solve things quickly. If you dive deep into algebra immediately, you might
miss some short-cuts. That said, it’s always possible to reason about a transfer function in terms
of the contributions to the phase and magnitude from each zero and pole, and you can solve for
these using some relatively simple formulae.
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