
Convolution with the Hartley transform

M. Rule

July 13, 2020

The Hartley transform can be computed by summing the real and imaginary parts of the Fourier
transform.

Fa = x + iy
Ha = x + y,

(1)

where a, x, and y are real-valued vectors, F is the Fourier transform, and H is the Hartley trans-
form. It has several useful properties.

• It is unitary, and also an involution: it is its own inverse.
• Its output is real-valued, so it can be used with numerical routines that cannot handle com-

plex numbers.
• It can be computed in O(n log(n)) time using standard Fast Fourier Transform (FFT) li-

braries.

Disadvantages are that the Hartley spectrum is less intuitive than the Fourier spectrum, and that
convolutions are tricker to compute. With the Fourier transform, convolutions can be computed
using the convolution theorem:

a ∗ b = F−1[(Fa) ◦ (Fb)] (2)

where a and b are vectors, F is the Fourier transform, and ◦ denotes element-wise multiplication.

Convolutions for real-valued inputs can also be computed using the Hartley transform, albeit
with a bit more work. For the Fourier transform real-valied inputs, the negative frequencies are
the complex conjugate of positive frequencies. That is, if the Fourier coefficient for +ω is x + iy,
then the coefficient for −ω is x− iy.

For real-valued inputs, this means that positive frequencies of the Hartley transform take on val-
ues x + y and negative values x − y. These two components are orthogonal, and can be used to
recover the original real and imaginary parts of the Fourer transform.

[<(Fa)](ω) = 1
2 {[Ha](ω) + [Ha](−ω)}

[=(Fa)](ω) = 1
2 {[Ha](ω)− [Ha](−ω)}

(3)

To convolve real-valued signals using the Hartley transform, convert the Hartley spectrum to the
Fourier spectrum, and use the standard convolution theorem. This simplifies to:

1

https://en.wikipedia.org/wiki/Hartley_transform

a ∗ b = 1
2H
−1{[Ha](ω)[Hb](ω) + [Ha](−ω)[Hb](ω)

+[Ha](ω)[Hb](−ω)− [Ha](−ω)[Hb](−ω)}
(4)

Here’s an example in numpy/scipy:

from pylab import *

reference convolution

p = exp(-0.5*linspace(-9,9,100)**2)

q = randn(100)

fp = fft(p,norm='ortho')

fq = fft(q,norm='ortho')

z = real(ifft(fp*fq,norm='ortho'))

~~ fht convolution

def fht(*args):

f = fft(*args,norm='ortho')

return real(f) + imag(f)

reverse = lambda a:roll(a[::-1],len(a)+1)

hp = fht(p)

hq = fht(q)

rp = reverse(hp)

rq = reverse(hq)

hz = fht(hp*hq + rp*hq + hp*rq - rp*rq)/2

print(max(abs(hz - z)))

>>>> 1.6653345369377348e-16

2

