
These notes are structured as an iPython/Jupyter notebook tutorial written in python 3, and depend only on

the numpy and scipy libraries. [download as: .ipynb , .html , .pdf]

Applying Gaussian pr cess models to hippocampal
grid cell data

Gaussian Processes (GPs) generalize the idea of multivariate Gaussian distributions to distributions over

functions. In neuroscience, they can be used to estimate how the firing rate of a neuron varies as a function

of other variables (e.g. to track retinal waves). Lately

firing rate map of hippocampal grid cells .

W

analyzing grid cell data, and finally construct a GP model of the log-rate that accounts for the Poisson noise

in spike count data. Along the way kernel density

estimation , or approximating GP inference using convolutions.

Intr duction

First, we briefly review Bayesian inference for multivariate Gaussian variables and Gaussian processes.

Then, we construct some synthetic spike-count observations, similar to what one might see in hippocampal

grid cells. W

and discuss some regularization choices when data are limited.

Ba esian inf r nce in multivar ate Gaussian distributions

Loosely

many variables. It's helpful to review Bayesian inference for multivariate Gaussian variables before

continuing.

Consider estimating some jointly Gaussian variables from observations . Bayes' rule states that the

posterior distribution is proportional to our prior , times the likelihood of observing given ,

:

Consider a case where both and are Gaussian:

W using Bayes' rule, by multiplying these two probability distributions (and

normalizing the result to integrate to one).

y

Pr(z|y) Pr(z z

Pr(y|z)

Pr(z|y) ∝ Pr(y|z) Pr(z). (1)

Pr(y|z Pr(z)

Pr(z = N (μ0, Σ0)

Pr(z|y = N (y, Σϵ)
(2)

Pr(z|y

This product of two multivariate Gaussian distributions is also a multivariate Gaussian distribution,

, with covariance and mean:

In other textbooks or tutorials, you might also see this written as

Both forms are equivalent, and are related to each other by applying the Sherman–Morrison–Woodbury

matrix inversion lemma .

Gaussian process regr ssion

Gaussian processes are commonly used to estimate a smooth underlying trend from noisy observations.

Peter Roelants' notes on Gaussian processes is a clear and detailed introduction.

Consider a GP regression problem for learning , where are coordinates in 2D. Here,

our prior over functions is specified not by a mean and covariance, but by a mean function and a two-

point correlation function , called a kernel. These functions accept a set of points as input and return

a mean vector and covariance matrix evaluated at those points.

For the regression problem, we'd like learn a model of given some initial observations

 at locations .

GP regression builds a posterior distribution over possible functions , given our prior (mean and kernel),

and these observations.

For any finite collection of points , we can evaluate the GP posterior at

output points .

where the means and covariances are computed according to the prior mean and kernel, and

, respectively is typically assumed to be i.i.d. Gaussian noise

with variance , i.e. , although we'll explore some other options here.

T

the data and the posterior over the same set of points , i.e. .

Pr(y|z) Pr(z ∝ ex [− (z− μ0)⊤Σ
−1
0 (z− μ)] e p[− (z− y)⊤Σ−1

ϵ (z− y)]
∝ ex {− [z⊤Σ−1

0 z− 2z⊤Σ−1
0 μ0 + z⊤Σ−1

ϵ z− 2z⊤Σ−1
ϵ y }

= ex {− [z⊤(Σ−1
0 +Σ−1

ϵ)z− 2z⊤(Σ−1
0 μ +Σ−1

ϵ y)]}
= ex {− [z⊤Σ−1z− 2z⊤Σ−1μ]}
∝ ex {− (z− μ)⊤Σ−1(z− μ)}

(3)

1

2

1

2

1

2

1

2

1

2

1

2

ẑ ∼ N (μ, Σ)

Σ = [Σ−1
0 +Σ−1

ϵ]
−1

μ = Σ [Σ−1
0 μ0 +Σ−1

ϵ y]
(4)

Σ = Σ0 −Σ0[Σ0 +Σϵ]
−1Σ0

μ = μ +Σ0[Σϵ +Σ0]
−1(y− μ).

(5)

y = f(x) x = {x1,x2}

m(x)

κ(x,x′)

y = f(x)

Y = {y1,1, . . , y1,n X1 = {x1,1, . . ,x1, }

f(x)

X2 = {x2,1, . . ,x ,m} y2 = f(x2)

Y = {y ,1, . . , y2,n}

y2 ∼ N (μ, Σ)

μ = μ +Σ⊤
12[Σ11 +Σϵ]

−1(y1 − μ1)

Σ = Σ22 −Σ⊤
12[Σ11 +Σϵ]

−1Σ12,

(6)

μi=m(xi)

σ j=κ(xi,x) Σϵ

ξ2 Σϵ = ξ2I

X0 = {x1, . . ,x } X1 = X2 = X0

In this case, and , and the GP regression simplifies to:

This is identical to the posterior distribution for a multivariate Gaussian model we discussed earlier

if the data consist of Gaussian observations over a set of points, and you evaluate the posterior at these

same locations, there is no dif

multivariate Gaussian variables.

Exploring Gaussian Process methods in grid cell da a

First, let's set up our Python environment in the notebook.

Simula ing some dat

Let's generate some fake grid cell data. We'll simulate a spatial grid, and define a periodic grid-like

firing intensity , so we'll make the arena irregularly shaped, and model

some background rate fluctuations, and non-uniform sampling of the grid (maybe the rat visits some

locations more than others).

W

convolution, without mixing up data from opposite ides. This will be useful later

can be computed very quickly using the Fast Fourier Transform (FFT) . More generally

to mask out parts of the space if e.g. the rat was exploring an arena with something other than a square

shape.

μ = μ = μ Σ11 = Σ12 = Σ22 = Σ0

Σ = Σ0 −Σ0[Σ0 +Σϵ]
−1Σ0

μ = μ0 +Σ0[Σ0 +Σϵ]
−1(y − μ),

(7)

%matplotlib inline
First, set up envirinment
from pylab import *
mpl.rcParams['figure.figsize'] = (8,2.5)
mpl.rcParams['figure.dpi'] = 200
mpl.rcParams['image.origin'] = 'lower'
mpl.rcParams['image.cmap']='magma'
np.seterr(divide='ignore', invalid='ignore');

L×

L = 128 # Grid size
P = L/10 # Grid spacing
� = 0.5 # Grid "sharpness"
� = 1500/L**2 # Mean firing rate (spikes per sample)

2D grid coordinates as complex numbers
c = arange(L)-L//2
coords = 1j*c[:,None]+c[None,:]

def ideal_hex_grid(L,P):
 # Build a hexagonal grid by summing three cosine waves
 �s = exp(1j*array([0,pi/3,2*pi/3]))
 return sum([cos((�*coords).real*2*pi/P) for � in �s],0)

Generate intensity map: Exponentiate and scale mean rate

�0 = exp(ideal_hex_grid(L,P)*�)
�0 = �0*�/mean(�0)

Zero pad edges

W arrays: , which counts the number of times the rat visits

each location, and , which counts the total number of spikes observed in each location. Spikes are

sampled as a conditionally-Poisson process with rate equal to the intensity at each location.

Let's plot things.

Estimating r te in each bin

pad = L*1//10
mask = zeros((L,L),dtype='bool')
mask[pad:-pad,pad:-pad]=1

Simulate oddly shaped arena
mask[:-L*4//10,L*3//10:L*4//10] = False
�0 = �0*mask

For realism, add some background rate changes

�0 = �0*(1-abs(coords/(L-2*pad)+0.1))

L× N

K

Simulated a random number of visits to each location
as well as Poisson spike counts at each location
N = poisson(2*(1-abs(coords/L-0.2j)),size=(L,L))*mask
K = poisson(�0*N)

def pscale(x,q1=0.5,q2=99.5,domask=True):
 # Plot helper: Scale data by percentiles
 u = x[mask] if domask else x
 p1 = percentile(u,q1)
 p2 = percentile(u,q2)
 x = clip((x-p1)/(p2-p1),0,1)
 return x*mask if domask else x

def showim(x,t='',**kwargs):
 # Plot helper: Show image with title, no axes
 if len(x.shape)==1: x=x.reshape(L,L)
 imshow(pscale(x,**kwargs));
 axis('off');
 title(t);

subplot(131); showim(mask,'Environmet')
subplot(132); showim(�0,'True rate')
subplot(133); showim(K,'Binned Spikes');

The simplest way to estimate the rate at each location is to simply divide the number of observed spikes

by the number of visits to each location. This is a very noisy estimate (below, left), and is undefined when

 is zero.

It's tempting to add a little ad-hoc regularization to handle the case gracefully, for example

. Tricks like this might seem arbitrary (and perhaps wrong), but can be more formally

motivated via Bayesian statistics.

W , we observe spikes, which are Poisson

distributed:

This gives us a likelihood for estimating given . The gamma distribution is the conjugate prior for Poisson

rates, with shape parameter and rate parameter :

W given rate as:

T observations , take the product of the likelihoods for each observation. This

reduces to a simplified expression in terms of the total number of spikes :

T . This

regularizes bins that have limited data, reducing variance at the expense of increased bias. For

regularization strength , we set , with and , and

were is the overall average firing rate of the neuron, regardless of location. This leads to a posterior

distribution of:

This gives a gamma-distributed posterior with and . The posterior mean,

, is a regularized estimator of the rate:

This is biased toward higher rates due the +1 in the numerator is another

option, which lacks this bias:

One can interpolate between these mean-based and mode-based regularizers with another parameter

K

λ̂ =
K

N

N =

λ̂ = K/(N +)1
2

λ

Pr(y|λ) = (8)
λ e−λ

Γ(y+ 1)

y

β

Pr(λ|α,β) = λα−1e−βλ. (9)
βα

Γ(α)

Pr(λ|y) ∝ λye−λ.

y ∈ {y1, . . , y }

K =∑t yt

Pr(λ|y1, . . , y) ∝∏ λy e−λ = λKe−N . (10)

λ

ρ > 0 Pr(λ) ∼ Ga ma(α0,β0) β = α0 = ρ(μ− 1) + 1

μ

Pr(λ|y1, . . , y) ∝ λ e−N ⋅ [α −1e−β λ]

= λ +ρ(μ−1)+1e−(N ρ λ.
(11)

α = K + ρ(− 1) + 1 β = N + ρ

α/β λ̂

λ̂ = . (12)
K + ρ(μ− 1) + 1

N + ρ

(α− 1)/

λ̂ o e = . (13)
K + ρ

N + ρ

, where corresponds to the mode-based estimator to the mean-based estimator:

W and as the default here.

Even with regularization, estimating the rate directly in each bin is far too noisy to be useful. Why go through

all this trouble to define a principled way to regularize counts for single bins then? These regularized rate

estimators provide a principled way to define how a rate estimator should behave when data are limited, and

can be incorporated into better estimators that pool data from adjacent bins. Next, we explore a simple way

to pool data from adjacent bins using kernel density smoothing.

K/N Estimator:
� Normalized MSE: 236.6%
� Pearson correlation: 0.17
Regularized Estimator:
� Normalized MSE: 206.4%
� Pearson correlation: 0.19

γ ∈ [, 1] γ = γ = 1

λ̂ = . (14)
K + ρ(μ− γ + γ

N + ρ

γ = 0.5 ρ = 1.

def reg�(N,K,�=1.3,�=0.5):
 # Regularized rate estimate
 return (K+�*(sum(K)/sum(N)-�)+�)/(N+�)

from scipy.stats import pearsonr
def printstats(a,b,message=''):
 # Print RMSE and correlation between two rate maps
 a,b = a.reshape(L,L)[mask],b.reshape(L,L)[mask]
 NMSE = mean((a-b)**2)/sqrt(mean(a**2)*mean(b**2))
 print(message+':')
 print('� Normalized MSE: %0.1f%%'%(100*NMSE))
 print('� Pearson correlation: %0.2f'%pearsonr(a,b)[0])

Rate per bin using naive and regularized estimators

�hat1 = nan_to_num(K/N)
�hat2 = reg�(N,K)
printstats(�0,�hat1,'K/N Estimator')
printstats(�0,�hat2,'Regularized Estimator')

Effect of regularization on error
�s,�s = linspace(1e-2,2,51),linspace(0,1,51)
MAE = array([[mean(abs(�0-reg�(N,K,�,�))**2) for � in �s] for � in �s])

subplot(121); showim(�hat2,'$\hat\lambda$, �=0.5, �=1.3')
subplot(122); imshow(-log(MAE),extent=(0,2,0,1),aspect=2)
xticks([0,1,2]); yticks([0,.5,1]); xlabel('�'); ylabel('�');
title('Regularized $\hat\lambda$ Error')
colorbar(label='$-\log(\operatorname{MSE})$');

Estimating r te by smoothing

Estimating r te via Kernel Densit Estimation (KDE)

The simplest way to estimate rate is to average the spike counts over nearby regions. We'll use a Gaussian

blur here. The 2D Gaussian blur is a separable filter , so we can compute it using two 1D Gaussian blurs in

each direction. This can also be done quickly using the Fast Fourier Transform (FFT) . This amounts to

Kernel Density Estimation (KDE) .

In our case, we must also account for the nonuniform sampling of space. The rat visits some locations more

than others. The solution is to smooth the spike counts and location visits separately

estimate the rate.

def blurkernel(L,�,normalize=False):
 # Gaussian kernel
 k = exp(-(arange(-L//2,L//2)/�)**2)
 if normalize:
 k /= sum(k)
 return fftshift(k)

def conv(x,K):
 # Compute circular 2D convolution using FFT
 # Kernel K should already be fourier-transformed
 return real(ifft2(fft2(x.reshape(K.shape))*K))

def blur(x,�,**kwargs):
 # 2D Gaussian blur via fft
 kern = fft(blurkernel(x.shape[0],�,**kwargs))
 return conv(x,outer(kern,kern))

λ̂ d =

κ(,x) = ex [−]
(15)

κ⊗K

κ⊗N
(x x

′)2

2σ2

def kde�(N,K,�,**kwargs):
 # Estimate rate using Gaussian KDE

If we want to use the regularized rate estimator defined earlier

 to unit height. This accounts for the fact that smoothing pools multiple observations, and so

increases the certainty of our rate estimate relative to the prior.

For analyzing the underlying grid, we might also want to remove large-scale variations in rate across the

arena. We can estimate a background rate also via Gaussian smoothing, and divide out this rate to get a

normalized estimate of how rate changes with location.

KDE Error:
� Normalized MSE: 30.5%
� Pearson correlation: 0.59

Inspecting the data

Kernel density smoothing yields a good estimate of the rate map, but we need to know how much to blur the

spike count data. W in a principled way by examining the autocorrelation of the data.

W efficiently using the FFT . T

rate, we should first subtract any constant component.

return reg�(blur(N,�),blur(K,�),**kwargs)

κ(,x)

λ̂ d = (16)
κ⊗K + ρ(μ− γ) + γ

κ⊗N + ρ

fg� = 4 # Kernel smoothing radius
bg� = L/15 # Background kernel radius
�hat = kde�(N,K,fg�)
�bg = kde�(N,K,bg�)
�bar = �hat/�bg

printstats(�0,�hat,'KDE Error')
subplot(131); showim(�hat,'Rate, KDE, �=%d'%fg�);
subplot(132); showim(�bg ,'Background Rate');
subplot(133); showim(�bar,'Normalized Rate');

def zeromean(x):
 # Mean-center data, accounting for masked-out regions
 x = x.reshape(mask.shape)
 return (x-mean(x[mask]))*mask

def fft_acorr(x):
 # Zero-lag normalized to match signal variance

W

radial distance. This radial autocorrelation has a large peak at zero lag, but also several smaller peaks due

to the periodic tuning curve.

W

interpolation computed via FFT to find the location of the peak that corresponds to the grid spacing.

For grid cells, the 2D autocorrelation should show a hexagon, which reflects the three sinusoidal

components that make up the periodic grid tiling (below

x = zeromean(x)
 # Window attenuates boundary artefacts
 win = hanning(L)
 win = outer(win,win)
 # Calculate autocorrelation using FFT
 psd = (abs(fft2(x*win))/L)**2
 acr = fftshift(real(ifft2(psd)))
 # Adjust peak for effects of mask, window
 return acr*var(x[mask])/acr[L//2,L//2]

def radial_average(y):
 # Get radial autocorrelation by averaging 2D autocorrelogram
 i = int32(abs(coords)) # Radial distance
 a = array([mean(y[i==j]) for j in range(L//2+1)])
 return concatenate([a[::-1],a[1:-1]])

def radial_acorr(y):
 # Autocorrelation as a function of distance
 return radial_average(fft_acorr(y))

def fft_upsample_1D(x,factor=4):
 '''
 Upsample 1D array using the FFT
 '''
 n = len(x)
 n2 = n*factor
 f = fftshift(fft(x))*hanning(n)
 f2 = np.complex128(np.zeros(n2))
 r0 = (n2+1)//2-(n+0)//2
 f2[r0:r0+n] = f
 return np.real(ifft(fftshift(f2)))*factor

from scipy.signal import find_peaks
def acorr_peak(r,F=6):
 # sinc upsample at ×F resolution to get distance to first peak
 r2 = fft_upsample_1D(r,F)
 return min(find_peaks(r2[len(r2)//2:])[0])/F-1,r2

�hat = kde�(N,K,L/75) # Small blur for initial esitmate
acorr2 = fft_acorr(�hat) # Get 2D autocorrelation
acorrR = radial_average(acorr2) # Get radial autocorrelation
res = 5 # Subsampling resolution

P,acup = acorr_peak(acorrR,res) # Distance to first peak in bins

figure(figsize=(8,2))
subplot(121); showim(acorr2,'Autocorrelation',domask=False)
subplot(122); plot(linspace(-L/2,L/2,L*res)-.5/res,acup)
[gca().spines[s].set_visible(0) for s in ['top','right','bottom','left']]
axhline(0,color='k',lw=.8); xticks([0]); xlabel('Distance');

Once we have grid spacing , we can define the scales for smoothin. We want to smooth as much as

possible, but not so much that we erase the underlying grid. A Gaussian with is a good heuristic

for the largest acceptable smoothing radius. For subtracting the background, we use .

KDE:
� Normalized MSE: 30.3%
� Pearson correlation: 0.60

Smoothing with Gaussian Pr cess r gression

KDE smoothing is ok, but we can do better. Gaussian Process (GP) regression provides a flexible way to

handle missing data, and also lets us encode more assumptions about the spatial correlations in the

underlying rate map.

axvline(0,color='k',lw=.8); yticks([0]); ylabel(' '*9+'Correlation',labelpad=-9)
axvline((0+1+P),color='y',lw=.8);
title('Radial Autocorrelation');

P

σ = P/

σ g = 2.5 ⋅ P/

fg� = P/pi
bg� = fg�*2.5
�hat = kde�(N,K,fg�)
�bg = kde�(N,K,bg�)

printstats(�0,�hat,'KDE')
subplot(131); showim(�hat,'Rate, KDE, �=%d'%fg�);
subplot(132); showim(�bg ,'Background Rate');
subplot(133); showim(�bar,'Normalized Rate');

Let's start by implementing smoothing using GP regression. Recall the formula for the GP posterior mean:

If we set the prior means to zero, this simplifies to:

T and measurement

precisions . For now per time-point.

W , and the total number of times the rat visits each location .

Binning observations lumps observations together into a single estimate. Points with more visits have

less error) can be removed, or handled gracefully if we work with precision rather

than variance. Precision is the reciprocal of variance, (in the multivariate case: the inverse of the

covariance matrix). For measurements with noies the precision is . W

precision matrix of the observations as

where denotes constructing a diagonal matrix from a vector denotes unravelling the

array into a length vector.

W by evaluating the kernel for all pairs of bins. Here, we

configure the kernel heuristically: we pick an arbitrary smoothing radius, and scale the kernel height to

match the estimated variance of the rate map.

Here, we explore a grid size of . For larger problems, the prior covariance might not fit in memory

As we'll see shortly

μ = [Σ−1 +Σ−1
ϵ]

−1
[Σ−1

ϵ y+Σ−1
0 μ0]

(17)

λ̂ p = [Σ−1
0 +Σ−1

ϵ]
−1
Σ−1
ϵ y (18)

Σ0

Σ−1
ϵ σ2

ϵ

K N

N = 0

τ = 1/σ2

σ2
ϵ τ = N/σ2

Σ−1
ϵ = di g[ϵ]

τ =
(19)v c[N]

σ2
ϵ

d a [] vec[] L×L

L2

Prepare error model for GP
	0 = mean(K)/mean(N) # variance per measurement

e = N.ravel()/	0 # precision per bin

Σ0 κ(x,x′)

Build 2D kernel for the prior
Scale kernel height to match data variance (heuristic)
k1 = blurkernel(L,fg�*2)
y = nan_to_num(K/N)
kern = outer(k1,k1)*var(y[mask])

from scipy.linalg import circulant

def kernel_to_covariance(kern):
 # Covariance is a doubly block-circulant matrix
 # Use np.circulant to build blocks, then copy
 # with shift to make 2D block-circulant matrix
 assert(argmax(kern.ravel())==0)
 L = kern.shape[0]
 b = array([circulant(r) for r in kern])
 b = b.reshape(L**2,L).T
 s = array([roll(b,i*L,1) for i in range(L)])
 return s.reshape(L**2,L**2)

L = 100

inverse) with a vector

The numerical stability of our GP regression will be poor if our prior covariance has small eigenvalues. The

eigenvalues of our covariance correspond to the coef

can "repair" our kernel by setting too-small eivenvalues with a small positive value.

T

inverting the prior covariance, so it's more numerically stable.

W

 can be evaluated as , where is element-wise multiplication.

 can be evaluated with row-wise multiplication .

 can be evaluated via convolution using the FFT

Finally to solve the linear system

Minres stands for "minimum residual", and is a type of Krylov subspace solver

 as:

And then minimizing this error ("residual"). We do not need to explicitly construct (which is memory

intensive), but instead supply a function that calculates for any given vector . This can be evaluated

ef .

def repair_small_eigenvalues(kern,mineig=1e-6):
 # Kernel must be positive; fix small eigenvalues
 assert(argmax(kern.ravel())==0)
 kfft = fft2(kern)
 keig = abs(kfft)
 �min = mineig*np.max(keig)
 zero = keig<�min
 kfft[zero] = �min
 kern = real(ifft2(maximum(�min,kfft)))
 return kern

μ = [Σ−1
0 +Σ−1

ϵ]
−1
Σ−1
ϵ y

= [Σ−1
0 + d ag[τ]]

−1
d a [τ]y

= [Σ0 dia [ϵ] + I
−1Σ0 dia [ϵ]y

(20)

dia [ϵ] di g[ϵ ∘ y] ∘

Σ0 di g[ϵ] Σ0 ∘ (ϵ1
⊤)

Σ0

μ = A−1
v

A = Σ0 dia [ϵ] + I

v = Σ−1
0 d ag[τ]y.

(21)

μ = A−1

μ = a gm n
μ

∥Aμ− v∥2 (22)

Aμ μ

import time
ttic = None
def tic(msg=''):
 # Timer routine to track performance
 global ttic
 t = time.time()*1000
 if ttic and msg:
 print(('�t = %d ms'%(t-ttic)).ljust(14)\
 +'elapsed for '+msg)

GP regression error:
� Normalized MSE: 25.4%
� Pearson correlation: 0.68

Sometimes GP r gression reduces to convolution

It seems like GP regression yields similar results to kernel density estimation. Can we relate these two

operations? Recall the solution for the GP posterior:

The prior is a positive semi-definite matrix, so it can be written in terms of the eigenvalue decomposition

where is a vector of eigenvalues and is a unitary basis. If can also be diagonalized by as

, then the posterior mean simplifies to

ttic = t

def showkn(k,t):
 # Plot helper; Shift convolution kernel to plot
 imshow(fftshift(k)); axis('off'); title(t);

from scipy.sparse.linalg import minres,LinearOperator

def solveGP(kern,y,
e,tol=1e-4,reg=1e-5):
 # Minimum residual solver is fast
 kern = repair_small_eigenvalues(kern,reg)
 knft = fft2(kern)

y =
e*zeromean(y).ravel()

y = conv(
y,knft).ravel()
 Hv = lambda v:conv(
e*v,knft).ravel() + v

	I = LinearOperator((L**2,L**2),Hv,Hv,dtype=np.float64)
 � = minres(
	I,
y,tol=tol)[0]
 return �.reshape(L,L) + mean(y[mask])

�GP1 = solveGP(kern,y,
e.ravel())
printstats(�0,�GP1,'GP regression error')
subplot(131); showkn(kern,'Prior Kernel');
subplot(132); showim(y,'Observations');
subplot(133); showim(�GP1/�bg,'Posterior Rate');

μ = [Σ−1
0 +Σ−1

ϵ]
−1
Σ−1
ϵ y. (23)

Σ0

Σ0 = Fdia [
~
]F−1, (24)

~
Σ−1
ϵ F

Σ−1
ϵ = Fd a [~] F⊤

In the special case that all measurements have noise , the precision matrix is proportional to

the identity, and the GP posterior reduces to:

When the GP is evaluated on a regularly-spaced grid, the eigenspace is Fourier space, and is the

(unitary) Fourier transform. The above matrix operations can therefore be computed as a convolution ()

with the kernel :

For large measurement error , the kernel is approximately proportional to the prior kernel .

When the measurement error is small , convolution with approximates the identity

transformation.

This highlights that sometimes filtering the observations with a convolution kernel gives you something

almost as good as a GP regression. This is much simpler

Error between GP regression and convolution:
� Normalized MSE: 17.4%
� Pearson correlation: 0.92

μ = Fd ag[]F−1 y. (25)
~
k~

~
k~τ+1

σ2
ϵ Σ−1

ϵ = I/σ2

μ = Fdi g[]F−1y. (26)
~
k

~
k σ2

F F

⊗

g(x,x′)

g(x,x′) = F−1 d ag[]
μ ≈ g⊗ y.

(27)

~
k

~
k+ 2

ϵ

σ2 ≫
~
k g(x,x′) κ

σ2 ≪
~
k g(x,x)

def mirrorpad(y,pad):
 # Reflected boundary for convolution
 y[:pad, :]=flipud(y[pad: pad*2,:])
 y[:, :pad]=fliplr(y[:, pad: pad*2])
 y[-pad:,:]=flipud(y[-pad*2:-pad,:])
 y[:,-pad:]=fliplr(y[:,-pad*2:-pad])
 return y

Uniform measurement error � GP = convolution
�
 = mean((N/	0)[mask])
kft = fft2(kern)
gft = (kft*�
)/(kft*�
+1)
y = mirrorpad(nan_to_num(K/N),pad)
�y = mean(y[mask])
�cnv = conv(y-�y,gft)+�y

printstats(�cnv,�GP1,'Error between GP regression and convolution')
subplot(121); showkn(real(ifft2(gft)),'Convolution Kernel');
subplot(122); showim(�cnv/�bg,'Convolution Approximation');

Better prior

So far . When analyzing data from grid cells, the real

power of GP regression lies in being able to encode the knowledge that the grid should be periodic into the

GP prior kernel.

T , we estimate the autocorrelation from a perfect grid. T

particular orientation, we make the kernel radially symmetric. T

where none exist, we taper the kernel to look only at the local neighborhood.

from scipy.interpolate import interp1d
def radial_kernel(rk):
 # Make radially symmetric 2D kernel from 1D radial kernel
 r = abs(coords)
 kern = interp1d(arange(L//2),rk[L//2:],
 fill_value=0,bounds_error=0)(r)
 return fftshift(kern)

Make symmetric kernel from autocorrelation of ideal grid
acgrd = fft_acorr(ideal_hex_grid(L,P))
kernR = radial_kernel(radial_average(acgrd))

Restrict kernel to local neighborhood and normalize

window = abs(coords)<P*sqrt(2)
kern0 = blur(kernR*fftshift(window),P/pi)
kern0 = kern0/np.max(kern0)

subplot(131); showim(acgrd,'Ideal Autocorrelation',domask=False);
subplot(132); showkn(kernR,'Radial Kernel');
subplot(133); showkn(kern0,'Windowed');

W

kernel to match a estimate of the variance in the rate.

The zero-lag autocorrelation of the data reflects the sum of the true variance in the underlying rates, plus the

average measurement noise.

T

quadratic polynomial to the correlation at nearby

This prior encodes the assumption that the observed spike counts have a periodic underlying structure, and

leads to better recovery of the grid fields.

GP with periodic kernel:
� Normalized MSE: 27.4%
� Pearson correlation: 0.79

def zerolag(ac,r=3):
 # Estimate true zero-lag variance via quadratic interpolation.
 z = array(ac[L//2-r:L//2+r+1])
 v = arange(r*2+1)
 return polyfit(v[v!=r],z[v!=r],2)@[r**2,r,1]

Estimate zero-lag variance and scale kernel
acorrR1 = radial_acorr(reg�(N,K))
acorrR2 = copy(acorrR1)
v0 = zerolag(acorrR1)
kern = kern0*v0
acorrR2[L//2] = v0

	0 = mean((K/N)[N>0])
�GP2 = solveGP(kern,y,N.ravel()/	0)
printstats(�0,�GP2,'GP with periodic kernel')

subplot(121)
axhline(0,color='k',lw=.8)
plot(acorrR1[L//2:],label='Autocorrelation')
plot(kern[0,:L//2] ,label='Kernel')
xticks([0]); xlabel('Distance'); xlim(0,L//4)
yticks([0]); ylabel('Correlation'); ylim(ylim()[0],v0*4)
[gca().spines[s].set_visible(0) for s in ['top','right','bottom']];
legend(); title('Height Calibration')
subplot(122); showim(�GP2,t='Posterior Rate');

Heuristic approximation of Poisson noise

Neuronal spiking is typically treated as conditionally Poisson, which means its variance should be

proportional to the firing rate. Let's explore a heuristic way to incorporate a Poisson noise assumption into

our GP regressions. Earlier

Poisson count data. W

collection of Poisson observations, and incorporate this model of uncertainty into our GP regression.

The variance of a distribution is . The regularized rate estimator given spikes

in visits to a given location yields a Gamma distribution with with and

. The variance, then, is

Performance for this model of the error is mixed: it can work better than assuming constant error when data

are limited, but sometimes performs worse than simply assuming uniform variance equal to the neuron's

average firing rate. W

GP:
� Normalized MSE: 48.6%
� Pearson correlation: 0.73

Ga m (α,β) σ2 = α/β2

α = K + ρ(μ− γ) + 1 β = N + ρ

σ2 = = (28)α

β2

K ρ(−γ)+1

(N ρ 2

Use estimated rate as measurement error variance
ve = kde�(N,K,fg�,�=1,�=.5)
y = nan_to_num(K/N)
�GP3 = solveGP(kern,y,(N/ve).ravel())
printstats(�0,�GP3,'GP')
subplot(121); showim(1/ve,q2=95,t='Precision ($1/\sigma^2_\epsilon$) Estimate');
subplot(122); showim(�GP3,'Posterior Rate');

Log-Gaussian Cox Processes

So far

heuristic decisions about how to model measurement noise. Can we do better?

W Cox process model to the binned

count observations. This places a Gaussian process prior on the logarithm of the intensity, , and

assumed that spike count observations are conditionally Poisson:

Above, are the log-rates that we want to infer is a an indicator vector which is 1 for the rat's current

binned location and zero otherwise.

Recall that the probability of observing spike count given rate , for Poisson-distributed spike counts, is:

W . The log-probability of observing spike count given rate

, for Poisson-distributed spike counts, is:

W by multiplying our Gaussian process prior by this Poisson

likelihood, for all time points.

The maximum a poster ori estimate

W that maximizes the posterior probability of the observed spike counts. This is the Maximum A

Posteriori (MAP) estimator

convention, we work with the negative log-posterior so that finding the MAP is a minimization problem.

The negative log-posterior , summed over all observations ,

, is:

l (λ)

y ∼ Poiss n(λ)

λ = ex (w x)

w ∼ N (0, Σ0)

(29)

λ

Pr(y|λ) = (30)
λ e−λ

Γ(y+ 1)

λ

l Pr(y|λ) = y lnλ− λ+ c ns . (31)

w

L = − lnPr(Y |x,w,β Y = {y1, . . , y }

X = {x1, . . ,x }

W spatial regions. Each site has visits in which we observe spikes.

Define as the empirical rate in each region. We can rewrite the sum over all timepoints in the log

likelihood, as a sum over all spatial regions:

The negative log-posterior can then be written as:

W the log-posterior simplifies to:

W . This can be solved via gradient descent.

However function performed poorly

either crashing, failing to terminate. Scipy's conjugate gradient method performed the best, but achieved

poor error tolerance. Instead, we can build our own Newton-Raphson solver

Finding the maximum a post riori using Ne ton-Raphson

Newton-Raphson solves a linear system on each iteration. Each iteration takes the same amount of time as

solving a single GP regression problems.

(Indeed, one can view each stage of Newton-Raphson as its own GP regression problem. This is the idea

behind the Iteratively Reweighted Least Squares (IRLS) approach to fitting Generalized Linear Models

(GLMs). The Gaussian process model used here can be viewed as a Poisson GLM with the GP prior acting

as a regularizer Lieven Clement has a good introduction on IRLS.)

Each iteration of Newton-Raphson updates the parameters as

where and are the Jacobian (gradient) and Hessian (curvature) of our negative log-

posterior at the current parameter estimate .

T . W

these as a sum of a contribution from the log-prior and log-likelihood.

The negative log-prior is (up to a constant). W

Jacobian in terms of vector derivatives in :

L = w
⊤Σ−1

0 w−∑ =1[t ln(λt) − λt] + c ns .

λ = e p(w⊤
xt)

(32)
1

2

r ∈ 1.. n kr

¯r = kr/n

∑ =1 yt ln(λt) − λ =∑R

r 1 n [¯r ln(λr) − λ] (33)

L = w
⊤Σ−1

0 w+∑R

r=1 nr[λ − ȳr l (λ)] + c ns . (34)1

2

λr = e p(w⊤
xr) = ex (w)

L = w
⊤Σ−1

0 w+∑R

r=1 nr[ex (w) − ȳrwr] + c ns . (35)1

2

w

wi+1 = wi −H
−1
J, (36)

J = ∇ H = ∇∇⊤

wi

w Σ−1
0 w

1

2

w

J0 = ∇ [w
⊤Σ−1

0 w]

= [w⊤Σ−1
0 +Σ−1

0 w]

= Σ−1
0 w

H0 = ∇∇⊤
w
[w

⊤Σ−1
0 w]

= Σ−1
0

(37)

1

2
1

2

1

2

For the negative log-likelihood , only the rate contributes to the

corresponding derivatives in :

These can be written in vector form as

where denotes element-wise multiplication and , , and

, are column vectors of the number of visits per bin, the current estimated rates, and the

empirical rates, respectively.

The Jacobian and Hessian can be written as:

The Newton-Raphson update is then given by

Note: (pr) c nditioning

As in GP regression, this problem can be numerically unstable if has smal eigenvalues. One can mitigate

this by multiplying both the Hessian and Jacobain on the left by (i.e. preconditioning).

However is invertable, it is faster in practice to use form , and pass an operator that computes

 to the preconditioner argument of

Note: when to use a separ te bias t rm?

Sometimes, you might want to separate out the average log-rate, and paramterize the LGCP as

; . Why? We want to avoid placing prior assumptions on the average firing rate of the

neuron. The average rate therefore corresponds to a direction in our Gaussian process that is entirely

unconstrained, i.e. has infinite variance in the prior

Since GP regression is linear

the posterior mean, and it suf

average log-rate is less straightforward to estimate in LGCP regression, and it must be inferred along with

the weights during optimization.

Here, we limit small eigenvalues of , so that is well-defined. W

rate component of by setting the DC term in its Fourier transform to zero.

However might be suf is

impractical or inaccurate. In this case, one can avoid inverting by treating the unconstrained mean as an

ℓ =∑R
r 1 n [xp(wr) − ȳrw] λr

w

∂
r
ℓ = n [e p(w) − ȳr] = nr[λ − ȳr]

∂2
r
ℓ = n ex (w) = n λ .

(38)

Jℓ = N ∘ (λ− ȳ)

H = di g[∘ λ],
(39)

N = {n1, . . ,n } λ = {λ1, . . ,λ }

λ = {¯1, . . , ¯R}

J = J0 + Jℓ = Σ−1
0 w+N ∘ (λ− ȳ)

H = H0 +H = Σ−1
0 + d ag[N ∘ λ]

(40)

wn 1 = wn −H
−1
J

= wn − [−1
0 + d a [N ∘ λ]

−1
[Σ−1

0 w +N ∘ (λ− ¯)]
(41)

Σ0

Σ0

wn 1 = wn − [Σ0 d ag[N ∘ λ + I
−1 {wn +Σ0[N ∘ (λ− ¯)]} (42)

Σ0 (41)

f(v) = Σ0

Θ = (w,β)

λ = ex (w+ β)

Σ0 Σ−1
0

Σ−1
0

Σ0 Σ−1
0

Σ0

additional bias parameter that is unaf .

Note: Iter t vely R weighted Leas - quar s (IRLS)

The Iteratevely Reweighted Least-Squares (IRLS) approach recasts the Newton-Raphson iteration as

solving a new GP regression problem. Rewrite the Newton-Raphson iteration as:

Recall the formula for the GP posterior is and . Matching

terms, we get:

This confirms that estimating the LGCP posterior has similar complexity to GP regression.

Note: initializing a prior f r log-Gaussian inf r nce

So far

point-process model of the grid cell. We also need to initialize a sensible prior for the weights , which will

correspond to our estimates of . W , but normalize the kernel

height to the variance of the log-rate, estimated via KDE.

Note: Hessian- ec or pr duct

w +1 = w −H−1 [−1
0 wn +N ∘ (λ− ȳ)]

= H
−1 [Hwn −Σ−1

0 wn +N ∘ (λ− ȳ)]

= H
−1 [(Σ−1

0 + dia [∘ λ])w −Σ−1
0 w +N ∘ (λ− ¯)]

= H
−1 di g[N ∘ λ] [w + (1 − ¯/λ)]

(43)

μ = Σ [−1
0 μ +Σ−1

ϵ y Σ = [Σ−1
0 +Σ−1

ϵ]
−1

Σ−1
0 = Σ−1

0

μ = 0

Σ−1
ϵ = diag[N ∘ λ]

y = wn + 1 − ȳ/λ

(44)

w

l λ

define a "safe log" function
minrate = 1e-2
slog = lambda x:log(maximum(minrate,x))

Precompute variables; Passed as globals to jac/hess

n = N.ravel()
y = nan_to_num(K/N)
l�h = slog(kde�(N,K,fg�))
kern = kern0*zerolag(radial_acorr(l�h))
kern = repair_small_eigenvalues(kern,1e-5)
knft = fft2(kern)
kift = 1/knft
kift[0,0]=0

preconditioner given by prior covariance

Mv = lambda v:conv(v,knft).ravel()
M = LinearOperator((L**2,)*2,Mv,Mv,dtype=np.float32)

def jacobian(w):
 J0 = conv(w,kift).ravel()
 Jl = n*(exp(w)-y.ravel())
 return J0+Jl

def hessian(w):
 # Hessian as linear operator to use with minres
 n� = n*exp(w)
 Hv = lambda u:conv(u,kift).ravel()+u*n�
 return LinearOperator((L**2,)*2,Hv,Hv,dtype=np.float64)

def newton_raphson(l�h,J,H,tol=1e-3,mtol=1e-5):
 u = l�h.ravel()
 for i in range(10):
 � = -minres(H(u),J(u),tol=mtol,M=M)[0]
 u += �
 if max(abs(�))<tol: return u
 print('Iteration did not converge')

w1 = newton_raphson(l�h,jacobian,hessian)
LGCP1 = w1.reshape(L,L)
printstats(slog(�0), LGCP1,'LGCP, log-rate')
subplot(131); showkn(kern ,'Kernel');
subplot(132); showim(y ,'Observations');
subplot(133); showim(LGCP1,'Log-Rate');

�hat = kde�(N,K,fg�) # Foreground rate

�bg = kde�(N,K,bg�) # Background rate
l�h = slog(�hat) # Log rate
l�b = slog(�bg) # Log background

Precompute variables; Passed as globals to jac/hess

kern = kern0*zerolag(radial_acorr(l�h-l�b))
kern = repair_small_eigenvalues(kern,1e-5)

knft = fft2(kern)
kift = 1.0/knft
Mv = lambda v:conv(v,knft).ravel()
M = LinearOperator((L**2,)*2,Mv,Mv,dtype=np.float32)

def jacobian(w):
 J0 = conv(w,kift).ravel()
 Jl = n*(exp(w+l�b.ravel())-y.ravel())
 return J0+Jl

def hessian(w):
 n� = n*exp(w+l�b.ravel())
 Hv = lambda u:conv(u,kift).ravel()+u*n�
 return LinearOperator((L**2,)*2,Hv,Hv,dtype=np.float64)

Fit model and unpack result
w2 = newton_raphson(l�h-l�b,jacobian,hessian)
LGCP2 = w2.reshape(L,L) + l�b
printstats(slog(�0),LGCP2,'LGCP, log-rate')
subplot(131); showkn(kern,'Kernel');
subplot(132); showim(y,'Observations');
subplot(133); showim(w2,'Normalized Log-Rate');

def LGCP_convolutional(N,K,fg�,bg�,kern,pad):
 # Evaluate via convolution
 kern = repair_small_eigenvalues(kern)
 y = mirrorpad(nan_to_num(K/N),pad)
 � = kde�(N,K,fg�)
 lb = slog(kde�(N,K,bg�))
 w = slog(�)-lb
 � = mean(w[N>0])
 w = w-�
 c = mean(1/(N*�)[N>0])
 f = fft2(kern)
 Gf = c/(c+f)
 w -= conv(w+conv(N*(�-y),f),Gf)
 return w+�+lb

LGCP3 = LGCP_convolutional(N,K,fg�,bg�,kern,pad)
printstats(LGCP2,LGCP3,'Error between Newton-Raphson and convolution')

subplot(121); showim(LGCP2-l�b,'LGCP Log-Rate')
subplot(122); showim(LGCP3-l�b,'Convolution');

def findpeaks(q,th=-inf,r=1):
 # Local maxima > th in square neighborhood radius r.
 L = q.shape[0]
 D = 2*r
 � = range(D+1)
 q0 = q[r:-r,r:-r,...]
 p = q0>th
 for i,j in {(i,j) for i in � for j in � if i!=r or j!=r}:
 p &= q0>=q[i:L+i-D,j:L+j-D,...]
 p2 = zeros(q.shape,bool)
 p2[r:-r,r:-r,...] = p
 return p2

pxy = array(where((findpeaks(LGCP2)*mask).T))
figure(figsize=(4,3));
showim(w2,'Peaks');
scatter(*pxy,s=5,facecolor='k',edgecolor='w',lw=0.4);

def mirror(x):
 # Mirror LxL data up to 2L+1 x 2L+1
 x = x.reshape(L,L)
 return block([[x,fliplr(x[:,1:])],[flipud(x[1:,:]),fliplr(flipud(x[1:,1:]))]])

def padout(kern):
 # Zero-pad LxL kernel up to 2L+1 x 2L+1
 k2 = zeros((L*2-1,L*2-1))
 k2[L//2:L//2+L,L//2:L//2+L] = fftshift(kern)
 return fftshift(k2)

Why this DCT implementation?
- This implmementation can be used directy to evaluate convolution with reflected
boundary conditions via pointwise multiplication (convolution theorem)
- It's based on the FFT of real symmetric data, so the data packing and interpretatio

of the coefficient matrix is the same as that of a FFT of twice the size

- The eigenvalues are real-valued, so they can be used directly with
linear algebra routines that require real-valued input

normalization = 1/(L*2+1)

def dct2v(x):
 # DCT Option 1: reflect data to create symmetry
 x = x.reshape(L,L)
 return real(fft2(mirror(x)))[:L,:L]*normalization
def dct2k(k):
 # DCT Option 2: if kernel already symmetric, zero pad
 return real(fft2(padout(k.reshape(L,L))))[:L,:L]
def idct2(x):
 # Inverse DCT
 return real(fft2(mirror(x)))[:L,:L]*normalization
def dctconv(v,kct):
 # Apply convolution operator via DCT
 xct = dct2v(v)
 return idct2(xct*kct).ravel()

DCT inverse should work and DCT
and FFT convolution should be similar
x = randn(L,L)
x1 = idct2(dct2v(x))
printstats(x,x1,'DCT inverse')
x1 = conv(x,fft2(kern))
x2 = dctconv(x,dct2k(kern))
printstats(x1,x2,'DCT convolution')

Low-rank approximation in frequency space using the DCT
from scipy.sparse import coo_matrix
keig = abs(dct2k(kern0))
print('minimum eigenvalue magnitude %e'%np.min(keig))
print('maximum eigenvalue magnitude %e'%np.max(keig))
mine = 0.005*np.max(keig)

use2 = keig>=mine
use1 = any(use2,0)
use3 = use2[:,use1][use1,:].ravel()
M2 = sum(use2)
M1 = sum(use1)
down = coo_matrix(eye(L*L)[use2.ravel()])
print('Using %d components'%M2)

def dct2lr(v):
 # send vector into low-rank representation
 if np.all(v==0): return zeros(M2)
 v = v.reshape(L,L)
 for i in range(2):
 v = block([v,fliplr(v[:,1:])])
 v = real(fft(v)).T[:L][use1]*normalization
 return v.ravel()[use3]

def idct2lr(u):
 # expand vector from subspace
 u = u.ravel()#@pcndi
 return idct2(down.T@u).ravel()

def dct2Alr(A):
 # collapse L²×L² matrix to subspace
 A = array([dct2lr(a) for a in A.reshape(L*L,L,L)]).T
 A = array([dct2lr(a) for a in A.reshape(M2,L,L)]).T
 return A

Expand matrix on left size from subspace
def idct2Alr_left(A):
 # Expand compressed representation on the left
 # A is MxM, we return NxM, N=L*L
 return array([idct2lr(a) for a in A.T]).T

def dct2klr(k):
 # DCT Option 2: if kernel already symmetric, zero pad
 return dct2k(k)[use2].ravel()

def dctconvlr(v,klr):
 # Apply convolution operator via DCT
 xlr = dct2lr(v)
 return idct2lr(xlr*klr).ravel()

low-rank DCT inverse should work and low-rank DCT
and FFT convolution should be similar if input is
well-approximated by low-rank.
x = randn(L,L)
x1 = conv(x,fft2(kern))
x2 = dctconvlr(x,dct2klr(kern))
printstats(x1,x2,'low-rank convolution')
print(mean(x1),mean(x2))
x1 = idct2lr(dct2lr(x2))
printstats(x1,x2,'low-rank inverse')
print(mean(x1),mean(x2))

from scipy.linalg import cholesky as chol
from scipy.linalg.lapack import dtrtri
from scipy.linalg import solve_triangular as stri

Calculate low-rank posterior covariance
klr = maximum(dct2klr(kern),1e-5)
kilr = 1/klr
v = eye(L)
v = block([v,fliplr(v[:,1:])])
v = real(fft(v)).T[:L][use1]*normalization
G = einsum('ml,ML->mMlL',v,v).reshape(M1*M1,L*L)[use3]
Hlr = diag(kilr*(L*2+1)**-2) + (G*(n*exp(LGCP2).ravel()))@G.T
Clr = chol(Hlr)
Dlr = dtrtri(Clr)[0]
Qlr = G.T@Dlr

def dx_op(L):
 # 2D difference operator in the 1st coordinate
 dx = zeros((L,L))
 dx[0, 1]=-.5
 dx[0,-1]= .5
 return dx

def hessian_2D(q):
 # Get Hessian at all points
 dx = dx_op(q.shape[0])
 f1 = fft2(dx)
 f2 = fft2(dx.T)
 d11 = conv(q,f1*f1)
 d12 = conv(q,f2*f1)
 d22 = conv(q,f2*f2)
 return array([[d11,d12],[d12,d22]]).transpose(2,3,0,1)

q = w2.reshape(L,L)
dx = dx_op(L)
Hx = hessian_2D(q)
Dx = det(Hx)

from scipy.stats import chi2
def covariance_crosshairs(S,p=0.8):
 # Generate a collection of (x,y) lines denoting the confidence

 # bound for p fraction of data from 2D covariance matrix S
 sigma = chi2.isf(1-p,df=2)
 e,v = eigh(S)
 lines = list(exp(1j*linspace(0,2*pi,181)))
 lines += [nan]+list(linspace(-1,-.2,5))
 lines += [nan]+list(1j*linspace(-1,-.2,5))
 lines += [nan]+list(linspace(.2,.95,5))
 lines += [nan]+list(1j*linspace(.2,.95,5))
 lines = array(lines)
 lines = array([lines.real,lines.imag])*sigma*(e**0.5)[:,None]
 return solve(v,lines)

def cinv(X,repair=False):
 # Invert matrix via Cholesky factorization
 ch = chol(X)
 ich = dtrtri(ch)[0]
 return ich.dot(ich.T)

def csolve(H,J):
 # Solve PSD linear system x = H^{-1}J via Cholesky factorization
 C = chol(H)
 return stri(C,stri(C.T,J,lower=True))

def plot_peakbounds(pxy,P):
 # D should be the cholesky factor of the Hessian of the log-posterior
 lx,ly = [],[]
 for x2,x1 in pxy.T:
 # Jacobian at x0
 �x1 = roll(dx ,(x1,x2),(0,1))
 �x2 = roll(dx.T,(x1,x2),(0,1))
 J = array([�x1,�x2]).reshape(2,L**2)
 # Peak location confidence
 xJD = csolve(-Hx[x1,x2],J@G.T@Dlr)
 x0 = xJD@xJD.T
 # Plot if peak is acceptably localized
 if max(eigh(x0)[0])<P*2:
 cx,cy = covariance_crosshairs(x0,p=0.9)
 lx += [nan] + list(cx+x2)
 ly += [nan] + list(cy+x1)
 plot(lx,ly,color='w',lw=1.6)
 plot(lx,ly,color='k',lw=0.4)
 axis('off'); title('90% Confidence');
 xlim(0,L); ylim(0,L)

figure(figsize=(4,3));
showim(q);
plot_peakbounds(pxy,P);

softmask = blur(mask,5,normalize=True)

def peak_density(w,Niter=1000):
 # w: posterior mean or mode vector
 # Ch: cholesky factor of log-posterior Hessian
 q = Qlr@randn(M2,Niter)
 q = (q+w2.ravel()[:,None]).reshape(L,L,Niter)
 q = (q-mean(mean(q,2)[mask]))*softmask[:,:,None]
 peaks = findpeaks(q,th=std(q))
 dnsty = mean(peaks,axis=2) + 1/Niter
 �hght = nan_to_num(sum(q*peaks,2)/sum(peaks,2))
 return dnsty,�hght

dnsty,�hght = peak_density(w2)
subplot(121); showim((dnsty),'Peak Density')
colorbar(label='$\log\,\Pr(\operatorname{peak})$')
subplot(122); showim(�hght*dnsty,'Height$\cdot\Pr$(peak)')
tight_layout()

Cholesky factorization

circulant

