
These notes are structured as an iPython/Jupyter notebook tutorial written in python 3, and depend only on

the numpy and scipy libraries. [download as: .ipynb , .html , .pdf ]

Applying Gaussian pr cess models to hippocampal
grid cell data

Gaussian Processes (GPs) generalize the idea of multivariate Gaussian distributions to distributions over

functions. In neuroscience, they can be used to estimate how the firing rate of a neuron varies as a function

of other variables (e.g. to track retinal waves ). Lately

firing rate map of hippocampal grid cells .

W

analyzing grid cell data, and finally construct a GP model of the log-rate that accounts for the Poisson noise

in spike count data. Along the way kernel density

estimation , or approximating GP inference using convolutions.

Intr duction

First, we briefly review Bayesian inference for multivariate Gaussian variables and Gaussian processes.

Then, we construct some synthetic spike-count observations, similar to what one might see in hippocampal

grid cells. W

and discuss some regularization choices when data are limited.

Ba esian inf r nce in multivar ate Gaussian distributions

Loosely

many variables. It's helpful to review Bayesian inference for multivariate Gaussian variables before

continuing.

Consider estimating some jointly Gaussian variables  from observations . Bayes' rule states that the

posterior distribution  is proportional to our prior , times the likelihood of observing  given , 

:

Consider a case where both  and  are Gaussian:

W  using Bayes' rule, by multiplying these two probability distributions (and

normalizing the result to integrate to one).

y

Pr(z|y) Pr(z z

Pr(y|z)

Pr(z|y) ∝ Pr(y|z) Pr(z). (1)

Pr(y|z Pr(z)

Pr(z = N (μ0, Σ0)

Pr(z|y = N (y, Σϵ)
(2)

Pr(z|y



This product of two multivariate Gaussian distributions is also a multivariate Gaussian distribution, 

, with covariance and mean:

In other textbooks or tutorials, you might also see this written as

Both forms are equivalent, and are related to each other by applying the Sherman–Morrison–Woodbury

matrix inversion lemma .

Gaussian process regr ssion

Gaussian processes are commonly used to estimate a smooth underlying trend from noisy observations.

Peter Roelants' notes on Gaussian processes is a clear and detailed introduction.

Consider a GP regression problem for learning , where  are coordinates in 2D. Here,

our prior over functions is specified not by a mean and covariance, but by a mean function  and a two-

point correlation function , called a kernel. These functions accept a set of points as input and return

a mean vector and covariance matrix evaluated at those points.

For the regression problem, we'd like learn a model of  given some initial observations 

 at locations .

GP regression builds a posterior distribution over possible functions , given our prior (mean and kernel),

and these observations.

For any finite collection of points , we can evaluate the GP posterior  at

output points .

where the means and covariances are computed according to the prior mean and kernel,  and 

, respectively  is typically assumed to be i.i.d. Gaussian noise

with variance , i.e. , although we'll explore some other options here.

T

the data and the posterior over the same set of points , i.e. .
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Σ = Σ0 −Σ0[Σ0 +Σϵ]
−1Σ0

μ = μ +Σ0[Σϵ +Σ0]
−1(y− μ ).

(5)

y = f(x) x = {x1,x2}

m(x)

κ(x,x′)

y = f(x)

Y = {y1,1, . . , y1,n X1 = {x1,1, . . ,x1, }

f(x)

X2 = {x2,1, . . ,x ,m} y2 = f(x2)

Y = {y ,1, . . , y2,n}

y2 ∼ N (μ, Σ)

μ = μ +Σ⊤
12[Σ11 +Σϵ]

−1(y1 − μ1)

Σ = Σ22 −Σ⊤
12[Σ11 +Σϵ]

−1Σ12,

(6)

μi=m(xi)

σ j=κ(xi,x ) Σϵ

ξ2 Σϵ = ξ2I

X0 = {x1, . . ,x } X1 = X2 = X0



In this case,  and , and the GP regression simplifies to:

This is identical to the posterior distribution for a multivariate Gaussian model we discussed earlier

if the data consist of Gaussian observations over a set of points, and you evaluate the posterior at these

same locations, there is no dif

multivariate Gaussian variables.

Exploring Gaussian Process methods in grid cell da a

First, let's set up our Python environment in the notebook.

Simula ing some dat

Let's generate some fake grid cell data. We'll simulate a  spatial grid, and define a periodic grid-like

firing intensity , so we'll make the arena irregularly shaped, and model

some background rate fluctuations, and non-uniform sampling of the grid (maybe the rat visits some

locations more than others).

W

convolution, without mixing up data from opposite ides. This will be useful later

can be computed very quickly using the Fast Fourier Transform (FFT) . More generally

to mask out parts of the space if e.g. the rat was exploring an arena with something other than a square

shape.

μ = μ = μ Σ11 = Σ12 = Σ22 = Σ0

Σ = Σ0 −Σ0[Σ0 +Σϵ]
−1Σ0

μ = μ0 +Σ0[Σ0 +Σϵ]
−1(y − μ ),

(7)

%matplotlib inline 
# First, set up envirinment 
from pylab import * 
mpl.rcParams['figure.figsize'] = (8,2.5) 
mpl.rcParams['figure.dpi'] = 200 
mpl.rcParams['image.origin'] = 'lower' 
mpl.rcParams['image.cmap']='magma' 
np.seterr(divide='ignore', invalid='ignore'); 

L×

L = 128  # Grid size 
P = L/10 # Grid spacing 
� = 0.5  # Grid "sharpness" 
� = 1500/L**2 # Mean firing rate (spikes per sample) 
 
# 2D grid coordinates as complex numbers 
c = arange(L)-L//2 
coords = 1j*c[:,None]+c[None,:] 
 
def ideal_hex_grid(L,P): 
    # Build a hexagonal grid by summing three cosine waves 
    �s = exp(1j*array([0,pi/3,2*pi/3])) 
    return sum([cos((�*coords).real*2*pi/P) for � in �s],0) 
 
# Generate intensity map: Exponentiate and scale mean rate 

�0 = exp(ideal_hex_grid(L,P)*�) 
�0 = �0*�/mean(�0) 

# Zero pad edges 



W  arrays: , which counts the number of times the rat visits

each location, and , which counts the total number of spikes observed in each location. Spikes are

sampled as a conditionally-Poisson process with rate  equal to the intensity at each location.

Let's plot things.

Estimating r te in each bin

pad = L*1//10
mask = zeros((L,L),dtype='bool') 
mask[pad:-pad,pad:-pad]=1 
 
# Simulate oddly shaped arena 
mask[:-L*4//10,L*3//10:L*4//10] = False 
�0 = �0*mask 
 
# For realism, add some background rate changes 

�0 = �0*(1-abs(coords/(L-2*pad)+0.1)) 

L× N

K

# Simulated a random number of visits to each location  
# as well as Poisson spike counts at each location 
N = poisson(2*(1-abs(coords/L-0.2j)),size=(L,L))*mask 
K = poisson(�0*N) 

def pscale(x,q1=0.5,q2=99.5,domask=True): 
    # Plot helper: Scale data by percentiles 
    u  = x[mask] if domask else x 
    p1 = percentile(u,q1) 
    p2 = percentile(u,q2) 
    x  = clip((x-p1)/(p2-p1),0,1) 
    return x*mask if domask else x 
     
def showim(x,t='',**kwargs): 
    # Plot helper: Show image with title, no axes 
    if len(x.shape)==1: x=x.reshape(L,L) 
    imshow(pscale(x,**kwargs)); 
    axis('off'); 
    title(t); 
 
subplot(131); showim(mask,'Environmet') 
subplot(132); showim(�0,'True rate') 
subplot(133); showim(K,'Binned Spikes'); 



The simplest way to estimate the rate at each location is to simply divide the number of observed spikes 

by the number of visits  to each location. This is a very noisy estimate (below, left), and is undefined when 

 is zero.

It's tempting to add a little ad-hoc regularization to handle the  case gracefully, for example 

. Tricks like this might seem arbitrary (and perhaps wrong), but can be more formally

motivated via Bayesian statistics.

W , we observe  spikes, which are Poisson

distributed:

This gives us a likelihood for estimating  given . The gamma distribution is the conjugate prior for Poisson

rates, with shape parameter  and rate parameter :

W  given rate  as:

T  observations , take the product of the likelihoods for each observation. This

reduces to a simplified expression in terms of the total number of spikes :

T . This

regularizes bins that have limited data, reducing variance at the expense of increased bias. For

regularization strength , we set , with  and , and

were  is the overall average firing rate of the neuron, regardless of location. This leads to a posterior

distribution of:

This gives a gamma-distributed posterior with  and . The posterior mean,

, is a regularized estimator  of the rate:

This is biased toward higher rates due the +1 in the numerator  is another

option, which lacks this bias:

One can interpolate between these mean-based and mode-based regularizers with another parameter 

K

λ̂ =
K

N

N =

λ̂ = K/(N + )1
2

λ

Pr(y|λ) = (8)
λ e−λ

Γ(y+ 1)

y

β

Pr(λ|α,β) = λα−1e−βλ. (9)
βα

Γ(α)

Pr(λ|y) ∝ λye−λ.

y ∈ {y1, . . , y }

K =∑t yt

Pr(λ|y1, . . , y ) ∝∏ λy e−λ = λKe−N . (10)

λ

ρ > 0 Pr(λ) ∼ Ga ma(α0,β0) β = α0 = ρ(μ− 1) + 1

μ

Pr(λ|y1, . . , y ) ∝ λ e−N ⋅ [ α −1e−β λ]

= λ +ρ(μ−1)+1e−(N ρ λ.
(11)

α = K + ρ( − 1) + 1 β = N + ρ

α/β λ̂

λ̂ = . (12)
K + ρ(μ− 1) + 1

N + ρ

(α− 1)/

λ̂ o e = . (13)
K + ρ

N + ρ



, where  corresponds to the mode-based estimator  to the mean-based estimator:

W  and  as the default here.

Even with regularization, estimating the rate directly in each bin is far too noisy to be useful. Why go through

all this trouble to define a principled way to regularize counts for single bins then? These regularized rate

estimators provide a principled way to define how a rate estimator should behave when data are limited, and

can be incorporated into better estimators that pool data from adjacent bins. Next, we explore a simple way

to pool data from adjacent bins using kernel density smoothing.

K/N Estimator: 
� Normalized MSE: 236.6%
� Pearson correlation: 0.17 
Regularized Estimator: 
� Normalized MSE: 206.4%
� Pearson correlation: 0.19 

γ ∈ [ , 1] γ = γ = 1

λ̂ = . (14)
K + ρ(μ− γ + γ

N + ρ

γ = 0.5 ρ = 1.

def reg�(N,K,�=1.3,�=0.5): 
    # Regularized rate estimate 
    return (K+�*(sum(K)/sum(N)-�)+�)/(N+�) 

from scipy.stats import pearsonr 
def printstats(a,b,message=''): 
    # Print RMSE and correlation between two rate maps 
    a,b = a.reshape(L,L)[mask],b.reshape(L,L)[mask]
    NMSE = mean((a-b)**2)/sqrt(mean(a**2)*mean(b**2)) 
    print(message+':') 
    print('� Normalized MSE: %0.1f%%'%(100*NMSE)) 
    print('� Pearson correlation: %0.2f'%pearsonr(a,b)[0])  

# Rate per bin using naive and regularized estimators

�hat1 = nan_to_num(K/N) 
�hat2 = reg�(N,K) 
printstats(�0,�hat1,'K/N Estimator') 
printstats(�0,�hat2,'Regularized Estimator') 
 
# Effect of regularization on error 
�s,�s = linspace(1e-2,2,51),linspace(0,1,51) 
MAE = array([[mean(abs(�0-reg�(N,K,�,�))**2) for � in �s] for � in �s]) 
 
subplot(121); showim(�hat2,'$\hat\lambda$, �=0.5, �=1.3') 
subplot(122); imshow(-log(MAE),extent=(0,2,0,1),aspect=2) 
xticks([0,1,2]); yticks([0,.5,1]); xlabel('�'); ylabel('�'); 
title('Regularized $\hat\lambda$ Error') 
colorbar(label='$-\log(\operatorname{MSE})$'); 



Estimating r te by smoothing

Estimating r te via Kernel Densit Estimation (KDE)

The simplest way to estimate rate is to average the spike counts over nearby regions. We'll use a Gaussian

blur here. The 2D Gaussian blur is a separable filter , so we can compute it using two 1D Gaussian blurs in

each direction. This can also be done quickly using the Fast Fourier Transform (FFT) . This amounts to

Kernel Density Estimation (KDE) .

In our case, we must also account for the nonuniform sampling of space. The rat visits some locations more

than others. The solution is to smooth the spike counts  and location visits  separately

estimate the rate.

def blurkernel(L,�,normalize=False): 
    # Gaussian kernel 
    k = exp(-(arange(-L//2,L//2)/�)**2) 
    if normalize: 
        k /= sum(k) 
    return fftshift(k) 
 
def conv(x,K): 
    # Compute circular 2D convolution using FFT 
    # Kernel K should already be fourier-transformed 
    return real(ifft2(fft2(x.reshape(K.shape))*K)) 
 
def blur(x,�,**kwargs): 
    # 2D Gaussian blur via fft 
    kern = fft(blurkernel(x.shape[0],�,**kwargs)) 
    return conv(x,outer(kern,kern)) 

λ̂ d =

κ( ,x ) = ex [− ]
(15)

κ⊗K

κ⊗N
(x x

′)2

2σ2

def kde�(N,K,�,**kwargs): 
    # Estimate rate using Gaussian KDE 



If we want to use the regularized rate estimator defined earlier

 to unit height. This accounts for the fact that smoothing pools multiple observations, and so

increases the certainty of our rate estimate relative to the prior.

For analyzing the underlying grid, we might also want to remove large-scale variations in rate across the

arena. We can estimate a background rate also via Gaussian smoothing, and divide out this rate to get a

normalized estimate of how rate changes with location.

KDE Error: 
� Normalized MSE: 30.5%
� Pearson correlation: 0.59 

Inspecting the data

Kernel density smoothing yields a good estimate of the rate map, but we need to know how much to blur the

spike count data. W  in a principled way by examining the autocorrelation of the data.

W efficiently using the FFT . T

rate, we should first subtract any constant component.

return reg�(blur(N,�),blur(K,�),**kwargs)

κ( ,x )

λ̂ d = (16)
κ⊗K + ρ(μ− γ) + γ

κ⊗N + ρ

fg�   = 4    # Kernel smoothing radius 
bg�   = L/15 # Background kernel radius 
�hat  = kde�(N,K,fg�)  
�bg   = kde�(N,K,bg�) 
�bar  = �hat/�bg 
 
printstats(�0,�hat,'KDE Error') 
subplot(131); showim(�hat,'Rate, KDE, �=%d'%fg�); 
subplot(132); showim(�bg ,'Background Rate'); 
subplot(133); showim(�bar,'Normalized Rate'); 

def zeromean(x): 
    # Mean-center data, accounting for masked-out regions 
    x = x.reshape(mask.shape)
    return (x-mean(x[mask]))*mask 
 
def fft_acorr(x): 
    # Zero-lag normalized to match signal variance 



W

radial distance. This radial autocorrelation has a large peak at zero lag, but also several smaller peaks due

to the periodic tuning curve.

W

interpolation computed via FFT to find the location of the peak that corresponds to the grid spacing.

For grid cells, the 2D autocorrelation should show a hexagon, which reflects the three sinusoidal

components that make up the periodic grid tiling (below

x = zeromean(x)
    # Window attenuates boundary artefacts 
    win = hanning(L) 
    win = outer(win,win) 
    # Calculate autocorrelation using FFT 
    psd = (abs(fft2(x*win))/L)**2 
    acr = fftshift(real(ifft2(psd))) 
    # Adjust peak for effects of mask, window 
    return acr*var(x[mask])/acr[L//2,L//2] 

def radial_average(y): 
    # Get radial autocorrelation by averaging 2D autocorrelogram 
    i = int32(abs(coords)) # Radial distance 
    a = array([mean(y[i==j]) for j in range(L//2+1)]) 
    return concatenate([a[::-1],a[1:-1]]) 
 
def radial_acorr(y): 
    # Autocorrelation as a function of distance 
    return radial_average(fft_acorr(y)) 

def fft_upsample_1D(x,factor=4): 
    ''' 
    Upsample 1D array using the FFT 
    ''' 
    n  = len(x) 
    n2 = n*factor 
    f  = fftshift(fft(x))*hanning(n) 
    f2 = np.complex128(np.zeros(n2)) 
    r0 = (n2+1)//2-(n+0)//2 
    f2[r0:r0+n] = f 
    return np.real(ifft(fftshift(f2)))*factor 
 
from scipy.signal import find_peaks 
def acorr_peak(r,F=6): 
    # sinc upsample at ×F resolution to get distance to first peak 
    r2 = fft_upsample_1D(r,F) 
    return min(find_peaks(r2[len(r2)//2:])[0])/F-1,r2 

�hat   = kde�(N,K,L/75)         # Small blur for initial esitmate 
acorr2 = fft_acorr(�hat)        # Get 2D autocorrelation 
acorrR = radial_average(acorr2) # Get radial autocorrelation 
res = 5 # Subsampling resolution

P,acup = acorr_peak(acorrR,res) # Distance to first peak in bins     
 
figure(figsize=(8,2)) 
subplot(121); showim(acorr2,'Autocorrelation',domask=False) 
subplot(122); plot(linspace(-L/2,L/2,L*res)-.5/res,acup) 
[gca().spines[s].set_visible(0) for s in ['top','right','bottom','left']] 
axhline(0,color='k',lw=.8); xticks([0]); xlabel('Distance');  



Once we have grid spacing , we can define the scales for smoothin. We want to smooth as much as

possible, but not so much that we erase the underlying grid. A Gaussian with  is a good heuristic

for the largest acceptable smoothing radius. For subtracting the background, we use .

KDE: 
� Normalized MSE: 30.3%
� Pearson correlation: 0.60 

Smoothing with Gaussian Pr cess r gression

KDE smoothing is ok, but we can do better. Gaussian Process (GP) regression provides a flexible way to

handle missing data, and also lets us encode more assumptions about the spatial correlations in the

underlying rate map.

axvline(0,color='k',lw=.8); yticks([0]); ylabel(' '*9+'Correlation',labelpad=-9)
axvline((0+1+P),color='y',lw=.8); 
title('Radial Autocorrelation'); 

P

σ = P/

σ g = 2.5 ⋅ P/

fg�  = P/pi 
bg�  = fg�*2.5 
�hat = kde�(N,K,fg�)  
�bg  = kde�(N,K,bg�) 
 
printstats(�0,�hat,'KDE') 
subplot(131); showim(�hat,'Rate, KDE, �=%d'%fg�); 
subplot(132); showim(�bg ,'Background Rate'); 
subplot(133); showim(�bar,'Normalized Rate'); 



Let's start by implementing smoothing using GP regression. Recall the formula for the GP posterior mean:

If we set the prior means to zero, this simplifies to:

T  and measurement

precisions . For now  per time-point.

W , and the total number of times the rat visits each location .

Binning observations lumps  observations together into a single estimate. Points with more visits have

less error ) can be removed, or handled gracefully if we work with precision rather

than variance. Precision  is the reciprocal of variance,  (in the multivariate case: the inverse of the

covariance matrix). For  measurements with noies  the precision is . W

precision matrix of the observations as

where  denotes constructing a diagonal matrix from a vector  denotes unravelling the 

array into a length  vector.

W  by evaluating the kernel  for all pairs of bins. Here, we

configure the kernel heuristically: we pick an arbitrary smoothing radius, and scale the kernel height to

match the estimated variance of the rate map.

Here, we explore a grid size of . For larger problems, the prior covariance might not fit in memory

As we'll see shortly

μ = [Σ−1 +Σ−1
ϵ ]

−1
[Σ−1

ϵ y+Σ−1
0 μ0]

(17)

λ̂ p = [Σ−1
0 +Σ−1

ϵ ]
−1
Σ−1
ϵ y (18)

Σ0

Σ−1
ϵ σ2

ϵ

K N

N = 0

τ = 1/σ2

σ2
ϵ τ = N/σ2

Σ−1
ϵ = di g[ ϵ]

τ =
(19)v c[N ]

σ2
ϵ

d a [] vec[] L×L

L2

# Prepare error model for GP 
	0 = mean(K)/mean(N) # variance per measurement 

e = N.ravel()/	0    # precision per bin 

Σ0 κ(x,x′)

# Build 2D kernel for the prior 
# Scale kernel height to match data variance (heuristic) 
k1   = blurkernel(L,fg�*2) 
y    = nan_to_num(K/N) 
kern = outer(k1,k1)*var(y[mask]) 
 
from scipy.linalg import circulant  
 
def kernel_to_covariance(kern): 
    # Covariance is a doubly block-circulant matrix 
    # Use np.circulant to build blocks, then copy 
    # with shift to make 2D block-circulant matrix 
    assert(argmax(kern.ravel())==0) 
    L = kern.shape[0] 
    b = array([circulant(r) for r in kern]) 
    b = b.reshape(L**2,L).T 
    s = array([roll(b,i*L,1) for i in range(L)]) 
    return s.reshape(L**2,L**2) 

L = 100



inverse) with a vector

The numerical stability of our GP regression will be poor if our prior covariance has small eigenvalues. The

eigenvalues of our covariance correspond to the coef

can "repair" our kernel by setting too-small eivenvalues with a small positive value.

T

inverting the prior covariance, so it's more numerically stable.

W

 can be evaluated as , where  is element-wise multiplication.

 can be evaluated with row-wise multiplication .

 can be evaluated via convolution using the FFT

Finally  to solve the linear system

Minres stands for "minimum residual", and is a type of Krylov subspace solver

 as:

And then minimizing this error ("residual"). We do not need to explicitly construct  (which is memory

intensive), but instead supply a function that calculates  for any given vector . This can be evaluated

ef .

def repair_small_eigenvalues(kern,mineig=1e-6): 
    # Kernel must be positive; fix small eigenvalues 
    assert(argmax(kern.ravel())==0) 
    kfft = fft2(kern) 
    keig = abs(kfft) 
    �min = mineig*np.max(keig) 
    zero = keig<�min 
    kfft[zero] = �min 
    kern = real(ifft2(maximum(�min,kfft))) 
    return kern 

μ = [Σ−1
0 +Σ−1

ϵ ]
−1
Σ−1
ϵ y

= [Σ−1
0 + d ag[τ ]]

−1
d a [τ ]y

= [Σ0 dia [ ϵ] + I
−1Σ0 dia [ ϵ]y

(20)

dia [ ϵ] di g[ ϵ ∘ y] ∘

Σ0 di g[ ϵ] Σ0 ∘ ( ϵ1
⊤)

Σ0

μ = A−1
v

A = Σ0 dia [ ϵ] + I

v = Σ−1
0 d ag[τ ]y.

(21)

μ = A−1

μ = a gm n
μ

∥Aμ− v∥2 (22)

Aμ μ

import time 
ttic = None
def tic(msg=''): 
    # Timer routine to track performance 
    global ttic 
    t = time.time()*1000 
    if ttic and msg:  
        print(('�t = %d ms'%(t-ttic)).ljust(14)\ 
              +'elapsed for '+msg) 



GP regression error: 
� Normalized MSE: 25.4%
� Pearson correlation: 0.68 

Sometimes GP r gression reduces to convolution

It seems like GP regression yields similar results to kernel density estimation. Can we relate these two

operations? Recall the solution for the GP posterior:

The prior  is a positive semi-definite matrix, so it can be written in terms of the eigenvalue decomposition

where  is a vector of eigenvalues and  is a unitary basis. If  can also be diagonalized by  as 

, then the posterior mean simplifies to

ttic = t
     
def showkn(k,t): 
    # Plot helper; Shift convolution kernel to plot 
    imshow(fftshift(k)); axis('off'); title(t); 

from scipy.sparse.linalg import minres,LinearOperator 
 
def solveGP(kern,y,
e,tol=1e-4,reg=1e-5): 
    # Minimum residual solver is fast 
    kern = repair_small_eigenvalues(kern,reg) 
    knft = fft2(kern) 
    
y   = 
e*zeromean(y).ravel() 
    
y  = conv(
y,knft).ravel() 
    Hv   = lambda v:conv(
e*v,knft).ravel() + v 
    
	I = LinearOperator((L**2,L**2),Hv,Hv,dtype=np.float64) 
    �    = minres(
	I,
y,tol=tol)[0] 
    return �.reshape(L,L) + mean(y[mask]) 

�GP1 = solveGP(kern,y,
e.ravel()) 
printstats(�0,�GP1,'GP regression error')
subplot(131); showkn(kern,'Prior Kernel'); 
subplot(132); showim(y,'Observations'); 
subplot(133); showim(�GP1/�bg,'Posterior Rate'); 

μ = [Σ−1
0 +Σ−1

ϵ ]
−1
Σ−1
ϵ y. (23)

Σ0

Σ0 = Fdia [
~
]F−1, (24)

~
Σ−1
ϵ F

Σ−1
ϵ = Fd a [~] F⊤



In the special case that all measurements have noise , the precision matrix  is proportional to

the identity, and the GP posterior reduces to:

When the GP is evaluated on a regularly-spaced grid, the eigenspace  is Fourier space, and  is the

(unitary) Fourier transform. The above matrix operations can therefore be computed as a convolution ( )

with the kernel :

For large measurement error , the kernel  is approximately proportional to the prior kernel .

When the measurement error is small , convolution with  approximates the identity

transformation.

This highlights that sometimes filtering the observations with a convolution kernel gives you something

almost as good as a GP regression. This is much simpler

Error between GP regression and convolution: 
� Normalized MSE: 17.4%
� Pearson correlation: 0.92 

μ = Fd ag[ ]F−1 y. (25)
~
k~

~
k~τ+1

σ2
ϵ Σ−1

ϵ = I/σ2

μ = Fdi g[ ]F−1y. (26)
~
k

~
k σ2

F F

⊗

g(x,x′)

g(x,x′) = F−1 d ag[ ]
μ ≈ g⊗ y.

(27)

~
k

~
k+ 2

ϵ

σ2 ≫
~
k g(x,x′) κ

σ2 ≪
~
k g(x,x )

def mirrorpad(y,pad): 
    # Reflected boundary for convolution 
    y[:pad, :]=flipud(y[ pad: pad*2,:]) 
    y[:, :pad]=fliplr(y[:, pad: pad*2]) 
    y[-pad:,:]=flipud(y[-pad*2:-pad,:]) 
    y[:,-pad:]=fliplr(y[:,-pad*2:-pad]) 
    return y 

# Uniform measurement error � GP = convolution 
�
   = mean((N/	0)[mask]) 
kft  = fft2(kern) 
gft  = (kft*�
)/(kft*�
+1) 
y    = mirrorpad(nan_to_num(K/N),pad) 
�y   = mean(y[mask]) 
�cnv = conv(y-�y,gft)+�y 
 
printstats(�cnv,�GP1,'Error between GP regression and convolution') 
subplot(121); showkn(real(ifft2(gft)),'Convolution Kernel'); 
subplot(122); showim(�cnv/�bg,'Convolution Approximation'); 



Better prior

So far . When analyzing data from grid cells, the real

power of GP regression lies in being able to encode the knowledge that the grid should be periodic into the

GP prior kernel.

T , we estimate the autocorrelation from a perfect grid. T

particular orientation, we make the kernel radially symmetric. T

where none exist, we taper the kernel to look only at the local neighborhood.

from scipy.interpolate import interp1d 
def radial_kernel(rk): 
    # Make radially symmetric 2D kernel from 1D radial kernel 
    r    = abs(coords) 
    kern = interp1d(arange(L//2),rk[L//2:], 
                    fill_value=0,bounds_error=0)(r) 
    return fftshift(kern) 
 
# Make symmetric kernel from autocorrelation of ideal grid 
acgrd = fft_acorr(ideal_hex_grid(L,P)) 
kernR = radial_kernel(radial_average(acgrd)) 
 
# Restrict kernel to local neighborhood and normalize

window   = abs(coords)<P*sqrt(2) 
kern0    = blur(kernR*fftshift(window),P/pi) 
kern0    = kern0/np.max(kern0) 

subplot(131); showim(acgrd,'Ideal Autocorrelation',domask=False); 
subplot(132); showkn(kernR,'Radial Kernel'); 
subplot(133); showkn(kern0,'Windowed'); 



W

kernel to match a estimate of the variance in the rate.

The zero-lag autocorrelation of the data reflects the sum of the true variance in the underlying rates, plus the

average measurement noise.

T

quadratic polynomial to the correlation at nearby

This prior encodes the assumption that the observed spike counts have a periodic underlying structure, and

leads to better recovery of the grid fields.

GP with periodic kernel: 
� Normalized MSE: 27.4%
� Pearson correlation: 0.79 

def zerolag(ac,r=3): 
    # Estimate true zero-lag variance via quadratic interpolation. 
    z = array(ac[L//2-r:L//2+r+1]) 
    v = arange(r*2+1) 
    return polyfit(v[v!=r],z[v!=r],2)@[r**2,r,1] 
 
# Estimate zero-lag variance and scale kernel 
acorrR1 = radial_acorr(reg�(N,K)) 
acorrR2 = copy(acorrR1) 
v0      = zerolag(acorrR1) 
kern    = kern0*v0 
acorrR2[L//2] = v0 

	0   = mean((K/N)[N>0]) 
�GP2 = solveGP(kern,y,N.ravel()/	0) 
printstats(�0,�GP2,'GP with periodic kernel') 
 
subplot(121) 
axhline(0,color='k',lw=.8) 
plot(acorrR1[L//2:],label='Autocorrelation') 
plot(kern[0,:L//2] ,label='Kernel') 
xticks([0]); xlabel('Distance');    xlim(0,L//4) 
yticks([0]); ylabel('Correlation'); ylim(ylim()[0],v0*4) 
[gca().spines[s].set_visible(0) for s in ['top','right','bottom']]; 
legend(); title('Height Calibration') 
subplot(122); showim(�GP2,t='Posterior Rate'); 



Heuristic approximation of Poisson noise

Neuronal spiking is typically treated as conditionally Poisson, which means its variance should be

proportional to the firing rate. Let's explore a heuristic way to incorporate a Poisson noise assumption into

our GP regressions. Earlier

Poisson count data. W

collection of Poisson observations, and incorporate this model of uncertainty into our GP regression.

The variance of a  distribution is . The regularized rate estimator given  spikes

in  visits to a given location yields a Gamma distribution with with  and 

. The variance, then, is

Performance for this model of the error is mixed: it can work better than assuming constant error when data

are limited, but sometimes performs worse than simply assuming uniform variance equal to the neuron's

average firing rate. W

GP: 
� Normalized MSE: 48.6%
� Pearson correlation: 0.73 

Ga m (α,β) σ2 = α/β2

α = K + ρ(μ− γ) + 1 β = N + ρ

σ2 = = (28)α

β2

K ρ( −γ)+1

(N ρ 2

# Use estimated rate as measurement error variance 
ve = kde�(N,K,fg�,�=1,�=.5) 
y  = nan_to_num(K/N) 
�GP3 = solveGP(kern,y,(N/ve).ravel()) 
printstats(�0,�GP3,'GP') 
subplot(121); showim(1/ve,q2=95,t='Precision ($1/\sigma^2_\epsilon$) Estimate'); 
subplot(122); showim(�GP3,'Posterior Rate'); 



Log-Gaussian Cox Processes

So far

heuristic decisions about how to model measurement noise. Can we do better?

W Cox process model to the binned

count observations. This places a Gaussian process prior on the logarithm of the intensity, , and

assumed that spike count observations are conditionally Poisson:

Above,  are the log-rates that we want to infer  is a an indicator vector which is 1 for the rat's current

binned location and zero otherwise.

Recall that the probability of observing spike count  given rate , for Poisson-distributed spike counts, is:

W . The log-probability of observing spike count  given rate 

, for Poisson-distributed spike counts, is:

W  by multiplying our Gaussian process prior by this Poisson

likelihood, for all  time points.

The maximum a poster ori estimate

W  that maximizes the posterior probability of the observed spike counts. This is the Maximum A

Posteriori (MAP) estimator

convention, we work with the negative log-posterior so that finding the MAP is a minimization problem.

The negative log-posterior , summed over all observations , 

, is:

l (λ)

y ∼ Poiss n(λ)

λ = ex (w x)

w ∼ N (0, Σ0)

(29)

λ

Pr(y|λ) = (30)
λ e−λ

Γ(y+ 1)

λ

l Pr(y|λ) = y lnλ− λ+ c ns . (31)

w

L = − lnPr(Y |x,w,β Y = {y1, . . , y }

X = {x1, . . ,x }



W  spatial regions. Each site  has  visits in which we observe  spikes.

Define  as the empirical rate in each region. We can rewrite the sum over all timepoints in the log

likelihood, as a sum over all spatial regions:

The negative log-posterior can then be written as:

W  the log-posterior simplifies to:

W . This can be solved via gradient descent.

However  function performed poorly

either crashing, failing to terminate. Scipy's conjugate gradient method performed the best, but achieved

poor error tolerance. Instead, we can build our own Newton-Raphson solver

Finding the maximum a post riori using Ne ton-Raphson

Newton-Raphson solves a linear system on each iteration. Each iteration takes the same amount of time as

solving a single GP regression problems.

(Indeed, one can view each stage of Newton-Raphson as its own GP regression problem. This is the idea

behind the Iteratively Reweighted Least Squares (IRLS) approach to fitting Generalized Linear Models

(GLMs). The Gaussian process model used here can be viewed as a Poisson GLM with the GP prior acting

as a regularizer Lieven Clement has a good introduction on IRLS.)

Each iteration of Newton-Raphson updates the parameters as

where  and  are the Jacobian (gradient) and Hessian (curvature) of our negative log-

posterior at the current parameter estimate .

T . W

these as a sum of a contribution from the log-prior and log-likelihood.

The negative log-prior is  (up to a constant). W

Jacobian in terms of vector derivatives in :

L = w
⊤Σ−1

0 w−∑ =1[ t ln(λt) − λt] + c ns .

λ = e p(w⊤
xt)

(32)
1

2

r ∈ 1.. n kr

¯r = kr/n

∑ =1 yt ln(λt) − λ =∑R

r 1 n [¯r ln(λr) − λ ] (33)

L = w
⊤Σ−1

0 w+∑R

r=1 nr[λ − ȳr l (λ )] + c ns . (34)1

2

λr = e p(w⊤
xr) = ex (w )

L = w
⊤Σ−1

0 w+∑R

r=1 nr[ex (w ) − ȳrwr] + c ns . (35)1

2

w

wi+1 = wi −H
−1
J, (36)

J = ∇ H = ∇∇⊤

wi

w Σ−1
0 w

1

2

w

J0 = ∇ [ w
⊤Σ−1

0 w]

= [w⊤Σ−1
0 +Σ−1

0 w]

= Σ−1
0 w

H0 = ∇∇⊤
w
[ w

⊤Σ−1
0 w]

= Σ−1
0

(37)
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For the negative log-likelihood , only the rate  contributes to the

corresponding derivatives in :

These can be written in vector form as

where  denotes element-wise multiplication and , , and 

, are column vectors of the number of visits per bin, the current estimated rates, and the

empirical rates, respectively.

The Jacobian and Hessian can be written as:

The Newton-Raphson update is then given by

Note: (pr ) c nditioning

As in GP regression, this problem can be numerically unstable if  has smal eigenvalues. One can mitigate

this by multiplying both the Hessian and Jacobain on the left by  (i.e. preconditioning ).

However  is invertable, it is faster in practice to use form , and pass an operator that computes

 to the preconditioner argument of 

Note: when to use a separ te bias t rm?

Sometimes, you might want to separate out the average log-rate, and paramterize the LGCP as 

; . Why? We want to avoid placing prior assumptions on the average firing rate of the

neuron. The average rate therefore corresponds to a direction in our Gaussian process that is entirely

unconstrained, i.e. has infinite variance in the prior

Since GP regression is linear

the posterior mean, and it suf

average log-rate is less straightforward to estimate in LGCP regression, and it must be inferred along with

the weights during optimization.

Here, we limit small eigenvalues of , so that  is well-defined. W

rate component of  by setting the DC term in its Fourier transform to zero.

However  might be suf  is

impractical or inaccurate. In this case, one can avoid inverting  by treating the unconstrained mean as an

ℓ =∑R
r 1 n [ xp(wr) − ȳrw ] λr

w

∂
r
ℓ = n [e p(w ) − ȳr] = nr[λ − ȳr]

∂2
r
ℓ = n ex (w ) = n λ .

(38)

Jℓ = N ∘ (λ− ȳ)

H = di g[ ∘ λ],
(39)

N = {n1, . . ,n } λ = {λ1, . . ,λ }

λ = {¯1, . . , ¯R}

J = J0 + Jℓ = Σ−1
0 w+N ∘ (λ− ȳ)

H = H0 +H = Σ−1
0 + d ag[N ∘ λ]

(40)

wn 1 = wn −H
−1
J

= wn − [ −1
0 + d a [N ∘ λ ]

−1
[Σ−1

0 w +N ∘ (λ− ¯)]
(41)

Σ0

Σ0

wn 1 = wn − [Σ0 d ag[N ∘ λ + I
−1 {wn +Σ0[N ∘ (λ− ¯)]} (42)

Σ0 (41)

f(v) = Σ0

Θ = (w,β)

λ = ex (w+ β)

Σ0 Σ−1
0

Σ−1
0

Σ0 Σ−1
0

Σ0



additional bias parameter  that is unaf .

Note: Iter t vely R weighted Leas - quar s (IRLS)

The Iteratevely Reweighted Least-Squares (IRLS) approach recasts the Newton-Raphson iteration as

solving a new GP regression problem. Rewrite the Newton-Raphson iteration as:

Recall the formula for the GP posterior is  and . Matching

terms, we get:

This confirms that estimating the LGCP posterior has similar complexity to GP regression.

Note: initializing a prior f r log-Gaussian inf r nce

So far

point-process model of the grid cell. We also need to initialize a sensible prior for the weights , which will

correspond to our estimates of . W , but normalize the kernel

height to the variance of the log-rate, estimated via KDE.

Note: Hessian- ec or pr duct

w +1 = w −H−1 [ −1
0 wn +N ∘ (λ− ȳ)]

= H
−1 [Hwn −Σ−1

0 wn +N ∘ (λ− ȳ)]

= H
−1 [(Σ−1

0 + dia [ ∘ λ])w −Σ−1
0 w +N ∘ (λ− ¯)]

= H
−1 di g[N ∘ λ] [w + (1 − ¯/λ)]

(43)

μ = Σ [ −1
0 μ +Σ−1

ϵ y Σ = [Σ−1
0 +Σ−1

ϵ ]
−1

Σ−1
0 = Σ−1

0

μ = 0

Σ−1
ϵ = diag[N ∘ λ]

y = wn + 1 − ȳ/λ

(44)

w

l λ

# define a "safe log" function 
minrate = 1e-2 
slog = lambda x:log(maximum(minrate,x)) 

# Precompute variables; Passed as globals to jac/hess

n    = N.ravel() 
y    = nan_to_num(K/N) 
l�h  = slog(kde�(N,K,fg�)) 
kern = kern0*zerolag(radial_acorr(l�h)) 
kern = repair_small_eigenvalues(kern,1e-5) 
knft = fft2(kern) 
kift = 1/knft 
kift[0,0]=0 
 
# preconditioner given by prior covariance 



Mv = lambda v:conv(v,knft).ravel()
M  = LinearOperator((L**2,)*2,Mv,Mv,dtype=np.float32) 
 
def jacobian(w): 
    J0 = conv(w,kift).ravel() 
    Jl = n*(exp(w)-y.ravel()) 
    return J0+Jl 
 
def hessian(w): 
    # Hessian as linear operator to use with minres 
    n� = n*exp(w) 
    Hv = lambda u:conv(u,kift).ravel()+u*n� 
    return LinearOperator((L**2,)*2,Hv,Hv,dtype=np.float64) 

def newton_raphson(l�h,J,H,tol=1e-3,mtol=1e-5): 
    u = l�h.ravel() 
    for i in range(10): 
        � = -minres(H(u),J(u),tol=mtol,M=M)[0] 
        u += � 
        if max(abs(�))<tol: return u 
    print('Iteration did not converge') 
 
w1    = newton_raphson(l�h,jacobian,hessian) 
LGCP1 = w1.reshape(L,L) 
printstats(slog(�0), LGCP1,'LGCP, log-rate') 
subplot(131); showkn(kern ,'Kernel'); 
subplot(132); showim(y    ,'Observations'); 
subplot(133); showim(LGCP1,'Log-Rate'); 

�hat = kde�(N,K,fg�) # Foreground rate

�bg  = kde�(N,K,bg�) # Background rate 
l�h  = slog(�hat)    # Log rate 
l�b  = slog(�bg)     # Log background 
 
# Precompute variables; Passed as globals to jac/hess

kern = kern0*zerolag(radial_acorr(l�h-l�b)) 
kern = repair_small_eigenvalues(kern,1e-5) 



knft = fft2(kern) 
kift = 1.0/knft 
Mv   = lambda v:conv(v,knft).ravel() 
M    = LinearOperator((L**2,)*2,Mv,Mv,dtype=np.float32) 
 
def jacobian(w): 
    J0 = conv(w,kift).ravel() 
    Jl = n*(exp(w+l�b.ravel())-y.ravel()) 
    return J0+Jl 
 
def hessian(w): 
    n� = n*exp(w+l�b.ravel()) 
    Hv = lambda u:conv(u,kift).ravel()+u*n� 
    return LinearOperator((L**2,)*2,Hv,Hv,dtype=np.float64) 

# Fit model and unpack result 
w2    = newton_raphson(l�h-l�b,jacobian,hessian) 
LGCP2 = w2.reshape(L,L) + l�b 
printstats(slog(�0),LGCP2,'LGCP, log-rate') 
subplot(131); showkn(kern,'Kernel'); 
subplot(132); showim(y,'Observations'); 
subplot(133); showim(w2,'Normalized Log-Rate'); 



def LGCP_convolutional(N,K,fg�,bg�,kern,pad): 
    # Evaluate via convolution 
    kern = repair_small_eigenvalues(kern) 
    y  = mirrorpad(nan_to_num(K/N),pad) 
    �  = kde�(N,K,fg�)  
    lb = slog(kde�(N,K,bg�)) 
    w  = slog(�)-lb 
    �  = mean(w[N>0]) 
    w  = w-�
    c  = mean(1/(N*�)[N>0]) 
    f = fft2(kern) 
    Gf = c/(c+f) 
    w -= conv(w+conv(N*(�-y),f),Gf) 
    return w+�+lb 

LGCP3 = LGCP_convolutional(N,K,fg�,bg�,kern,pad) 
printstats(LGCP2,LGCP3,'Error between Newton-Raphson and convolution') 
 
subplot(121); showim(LGCP2-l�b,'LGCP Log-Rate') 
subplot(122); showim(LGCP3-l�b,'Convolution'); 



def findpeaks(q,th=-inf,r=1): 
    # Local maxima > th in square neighborhood radius r.  
    L  = q.shape[0] 
    D  = 2*r
    �  = range(D+1) 
    q0 = q[r:-r,r:-r,...] 
    p  = q0>th 
    for i,j in {(i,j) for i in � for j in � if i!=r or j!=r}: 
        p &= q0>=q[i:L+i-D,j:L+j-D,...] 
    p2 = zeros(q.shape,bool) 
    p2[r:-r,r:-r,...] = p 
    return p2 

pxy = array(where((findpeaks(LGCP2)*mask).T)) 
figure(figsize=(4,3)); 
showim(w2,'Peaks');  
scatter(*pxy,s=5,facecolor='k',edgecolor='w',lw=0.4); 







def mirror(x): 
    # Mirror LxL data up to 2L+1 x 2L+1 
    x = x.reshape(L,L) 
    return block([[x,fliplr(x[:,1:])],[flipud(x[1:,:]),fliplr(flipud(x[1:,1:]))]]) 
 
def padout(kern): 
    # Zero-pad LxL kernel up to 2L+1 x 2L+1 
    k2 = zeros((L*2-1,L*2-1)) 
    k2[L//2:L//2+L,L//2:L//2+L] = fftshift(kern) 
    return fftshift(k2) 

# Why this DCT implementation?  
# - This implmementation can be used directy to evaluate convolution with reflected  
#   boundary conditions via pointwise multiplication (convolution theorem) 
# - It's based on the FFT of real symmetric data, so the data packing and interpretatio

#   of the coefficient matrix is the same as that of a FFT of twice the size

# - The eigenvalues are real-valued, so they can be used directly with  
#   linear algebra routines that require real-valued input 
 
normalization = 1/(L*2+1) 
 
def dct2v(x): 
    # DCT Option 1: reflect data to create symmetry 
    x = x.reshape(L,L) 
    return real(fft2(mirror(x)))[:L,:L]*normalization 
def dct2k(k): 
    # DCT Option 2: if kernel already symmetric, zero pad 
    return real(fft2(padout(k.reshape(L,L))))[:L,:L] 
def idct2(x): 
    # Inverse DCT 
    return real(fft2(mirror(x)))[:L,:L]*normalization 
def dctconv(v,kct): 
    # Apply convolution operator via DCT 
    xct = dct2v(v) 
    return idct2(xct*kct).ravel() 
 
# DCT inverse should work and DCT 
# and FFT convolution should be similar 
x  = randn(L,L) 
x1 = idct2(dct2v(x)) 
printstats(x,x1,'DCT inverse') 
x1 = conv(x,fft2(kern)) 
x2 = dctconv(x,dct2k(kern)) 
printstats(x1,x2,'DCT convolution') 

# Low-rank approximation in frequency space using the DCT 
from scipy.sparse import coo_matrix 
keig = abs(dct2k(kern0)) 
print('minimum eigenvalue magnitude %e'%np.min(keig)) 
print('maximum eigenvalue magnitude %e'%np.max(keig)) 
mine = 0.005*np.max(keig) 



use2 = keig>=mine
use1 = any(use2,0) 
use3 = use2[:,use1][use1,:].ravel() 
M2   = sum(use2) 
M1   = sum(use1) 
down = coo_matrix(eye(L*L)[use2.ravel()]) 
print('Using %d components'%M2) 

def dct2lr(v): 
    # send vector into low-rank representation 
    if np.all(v==0): return zeros(M2) 
    v = v.reshape(L,L) 
    for i in range(2): 
        v = block([v,fliplr(v[:,1:])]) 
        v = real(fft(v)).T[:L][use1]*normalization 
    return v.ravel()[use3] 
 
def idct2lr(u): 
    # expand vector from subspace 
    u = u.ravel()#@pcndi 
    return idct2(down.T@u).ravel() 
 
def dct2Alr(A): 
    # collapse L²×L² matrix to subspace 
    A = array([dct2lr(a) for a in A.reshape(L*L,L,L)]).T 
    A = array([dct2lr(a) for a in A.reshape(M2,L,L)]).T 
    return A 
 
# Expand matrix on left size from subspace 
def idct2Alr_left(A): 
    # Expand compressed representation on the left 
    # A is MxM, we return NxM, N=L*L 
    return array([idct2lr(a) for a in A.T]).T 
 
def dct2klr(k): 
    # DCT Option 2: if kernel already symmetric, zero pad 
    return dct2k(k)[use2].ravel() 
 
def dctconvlr(v,klr): 
    # Apply convolution operator via DCT 
    xlr = dct2lr(v) 
    return idct2lr(xlr*klr).ravel() 

# low-rank DCT inverse should work and low-rank DCT  
# and FFT convolution should be similar if input is 
# well-approximated by low-rank. 
x  = randn(L,L) 
x1 = conv(x,fft2(kern)) 
x2 = dctconvlr(x,dct2klr(kern)) 
printstats(x1,x2,'low-rank convolution') 
print(mean(x1),mean(x2)) 
x1 = idct2lr(dct2lr(x2)) 
printstats(x1,x2,'low-rank inverse') 
print(mean(x1),mean(x2)) 



from scipy.linalg import cholesky as chol 
from scipy.linalg.lapack import dtrtri 
from scipy.linalg import solve_triangular as stri 
 
# Calculate low-rank posterior covariance 
klr  = maximum(dct2klr(kern),1e-5) 
kilr = 1/klr 
v   = eye(L)
v   = block([v,fliplr(v[:,1:])]) 
v   = real(fft(v)).T[:L][use1]*normalization 
G   = einsum('ml,ML->mMlL',v,v).reshape(M1*M1,L*L)[use3] 
Hlr = diag(kilr*(L*2+1)**-2) + (G*(n*exp(LGCP2).ravel()))@G.T 
Clr = chol(Hlr) 
Dlr = dtrtri(Clr)[0] 
Qlr = G.T@Dlr 

def dx_op(L): 
    # 2D difference operator in the 1st coordinate 
    dx = zeros((L,L)) 
    dx[0, 1]=-.5 
    dx[0,-1]= .5 
    return dx 
 
def hessian_2D(q):
    # Get Hessian at all points 
    dx  = dx_op(q.shape[0]) 
    f1  = fft2(dx) 
    f2  = fft2(dx.T) 
    d11 = conv(q,f1*f1) 
    d12 = conv(q,f2*f1) 
    d22 = conv(q,f2*f2) 
    return array([[d11,d12],[d12,d22]]).transpose(2,3,0,1) 
 
q  = w2.reshape(L,L) 
dx = dx_op(L) 
Hx = hessian_2D(q) 
Dx = det(Hx)

from scipy.stats import chi2 
def covariance_crosshairs(S,p=0.8):
    # Generate a collection of (x,y) lines denoting the confidence  



    # bound for p fraction of data from 2D covariance matrix S 
    sigma  = chi2.isf(1-p,df=2) 
    e,v    = eigh(S) 
    lines  = list(exp(1j*linspace(0,2*pi,181))) 
    lines += [nan]+list(   linspace(-1,-.2,5)) 
    lines += [nan]+list(1j*linspace(-1,-.2,5)) 
    lines += [nan]+list(   linspace(.2,.95,5)) 
    lines += [nan]+list(1j*linspace(.2,.95,5)) 
    lines = array(lines) 
    lines = array([lines.real,lines.imag])*sigma*(e**0.5)[:,None] 
    return solve(v,lines) 

def cinv(X,repair=False): 
    # Invert matrix via Cholesky factorization 
    ch = chol(X) 
    ich = dtrtri(ch)[0] 
    return ich.dot(ich.T) 
 
def csolve(H,J): 
    # Solve PSD linear system x = H^{-1}J via Cholesky factorization 
    C = chol(H) 
    return stri(C,stri(C.T,J,lower=True)) 

def plot_peakbounds(pxy,P): 
    # D should be the cholesky factor of the Hessian of the log-posterior 
    lx,ly = [],[] 
    for x2,x1 in pxy.T: 
        # Jacobian at x0 
        �x1 = roll(dx  ,(x1,x2),(0,1)) 
        �x2 = roll(dx.T,(x1,x2),(0,1)) 
        J   = array([�x1,�x2]).reshape(2,L**2) 
        # Peak location confidence 
        xJD = csolve(-Hx[x1,x2],J@G.T@Dlr) 
        x0  = xJD@xJD.T 
        # Plot if peak is acceptably localized 
        if max(eigh(x0)[0])<P*2: 
            cx,cy = covariance_crosshairs(x0,p=0.9) 
            lx += [nan] + list(cx+x2) 
            ly += [nan] + list(cy+x1) 
    plot(lx,ly,color='w',lw=1.6) 
    plot(lx,ly,color='k',lw=0.4) 
    axis('off'); title('90% Confidence'); 
    xlim(0,L); ylim(0,L) 

figure(figsize=(4,3)); 
showim(q);  
plot_peakbounds(pxy,P); 



softmask = blur(mask,5,normalize=True) 
 
def peak_density(w,Niter=1000): 
    # w: posterior mean or mode vector 
    # Ch: cholesky factor of log-posterior Hessian 
    q = Qlr@randn(M2,Niter) 
    q = (q+w2.ravel()[:,None]).reshape(L,L,Niter) 
    q = (q-mean(mean(q,2)[mask]))*softmask[:,:,None] 
    peaks = findpeaks(q,th=std(q)) 
    dnsty = mean(peaks,axis=2) + 1/Niter 
    �hght = nan_to_num(sum(q*peaks,2)/sum(peaks,2)) 
    return dnsty,�hght 
 
dnsty,�hght = peak_density(w2) 
subplot(121); showim((dnsty),'Peak Density') 
colorbar(label='$\log\,\Pr(\operatorname{peak})$') 
subplot(122); showim(�hght*dnsty,'Height$\cdot\Pr$(peak)') 
tight_layout() 
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