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These notes contain some derivations for variational inference in Poisson and probit Generalized Linear
Models (GLMs) with a Gaussian prior and approximated Gaussian posterior. (see also here.)

0.0.1 Problem statement

Consider a population of neurons with �ring-intensities , = d () ), where d (·) is a �ring-rate nonlinearity
and ) is a vector of synaptic activations (amount of input drive to each neuron). For stochastic models of
spiking Pr(~ |\ ) in the canonical exponential family, the probability of observing spikes y given ) can be
written as

ln Pr(y|z) = y>) − 1>�() ) + constant, (1)

where �(G) is a known function whose derivative equals the �ring-rate nonlinarity, i.e. �′(·) = d (·).

Assume that the synaptic activations ) are driven by shared latent variables z with a Gaussian prior z ∼
N(-I , �I). Let ) = Bz, where “B” is a matrix of coupling coe�cients which determine how the latent
factors z drive each neuron.

We want to infer the distribution of z from observed spikes y. The posterior is given by Bayes rule,
Pr(z|y) = Pr(y|z) Pr(z)/Pr(y). However, this posterior does not admit a closed form if �(·) is nonlin-
ear. Instead, one can use a variational Bayesian approach to obtain an approximate posterior.

0.0.2 Variational Bayes

In variational Bayes, the posterior on z is approximated as Gaussian, i.e. Pr(z|y) ≈ & (z), where & (z) =
N(-@ , �@). We then optimize -@ and �@ to minimize the Kullback-Leibler (KL) divergence from the true
posterior Pr(z|y) to& (z). This is equivalent to minimizing the KL divergenece �KL [& (z)‖ Pr(z)] from the
prior to the posterior, while maximizing the expected log-likelihood 〈Pr(y|z)〉:

�KL [& (z)‖ Pr(z|y)] = �KL [& (z)‖ Pr(z)] − 〈ln Pr(y|z)〉 + constant. (2)

(In these notes, all expectations 〈·〉 are taken with respect to the approximating posterior distribution.)

Since both & (z) and Pr(z) are multivariate Gaussian, the KL divergence �KL [& (z)‖ Pr(z)] has the closed
form:

�KL [& (z)‖ Pr(z)] = 1
2

{
(-I − -@)>�−1I (-I − -@) + tr

(
�
−1
I �@

)
+ ln |�−1I �@ |

}
+ constant. (3)

For our choice of the canonically-parameterized natural exponential family, the expected negative log-
likelihood can be written as:

−〈ln Pr(y|z)〉 = 1>〈�() )〉 − y>B-@ + constant. (4)
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Neglecting constants and terms that do not depend on (-@ , �@), the overall loss function to be minimized
is:

L(-@ , �@) = 1
2

{
(-I − -@)>�−1I (-I − -@) + tr

(
�
−1
I �@

)
+ ln |�−1I �@ |

}
+ 1>〈�() )〉 − y>B-@ . (5)

0.0.3 Closed-form expectations

To optimize (5), we need to di�erentiate it in -@ and �@ . These derivatives are mostly straightforward, but
the expectation 〈�() )〉 poses di�culties when�(·) is nonlinear. We’ll consider some choices of �ring-rate
nonlinearity for which the derivatives of 〈�() )〉 have closed-form expressions when ) is Gaussian.

Because we’ve assumed a Gaussian posterior on our latent state z, and since ) = Bz, the synaptic activa-
tions ) are also Gaussian. The vectors -\ and 22

\
for the mean and variance of ) , respectively, are:

-\ = B-@
22
\
= diag

[
B�@B>

] (6)

Consider a single, scalar \ ∼ N(`,f2). Using the chain rule and linearity of expectation, one can show
that the partial derivatives m` 〈�(\ )〉 and mf2 〈�(\ )〉, with respect to ` and f2 respectively, are:

m` 〈�(\ )〉 = 〈�′(\ )〉 = 〈d (\ )〉
mf2 〈�(\ )〉 = 1

2f2 〈(\ − `\ )�′(\ )〉 = 1
2f2 〈(\ − `)d (\ )〉 .

(7)

For more compact notation, denote the expected �ring rate as _̄ = 〈d (\ )〉, and denote the expected deriva-
tive of the �ring-rate in \ as _̄′ = 〈d ′(\ )〉. Note that _̄ = m` 〈�(\ )〉 and 1

2 _̄
′ = mf2 〈�(\ )〉.

Closed-form expressions for _̄ and _̄′ exist only in some special cases, for example if the �ring-rate function
d (·) is a (recti�ed) polynomial. We consider two choices of �ring-rate nonlinearity which admit closed-
form expressions, “exponential” and “probit”.

-Choosing d = exp corresponds to a Poisson GLM. In this case, _̄ = _̄′ = exp(` + f2/2). -Let q (·) and Φ(·)
denote the probability density and cumulative distribution function, respectively, for a standard normal
distribution. Choosing d = Φ corresponds to a probit GLM. In this case, _̄ = Φ(W`) and _̄′ = Wq (W`), where
W = (1 + f2)−1.

For the probit �ring-rate nonlinearity, we will also need to know mf2 〈d ′() )〉 to calculate the Hessian-vector
product. In this case, d ′ = q . We have from (7) that mf2 〈q (G)〉 = 1

2f2 〈\ (` − \ )q (\ )〉. This can be solved
by writing the expectation as an integral and completing the square in the resulting Gaussian integral,
yielding:

mf2 〈q (G)〉 = D − 1√
8c4D (1 + f2)3

, where D =
`2

f2 + 1 . (8)

0.0.4 Derivatives of the loss function

With these prelimenaries out of the way, we can now consider the derivatives of (5) in terms of -@ and �@ .

Derivatives in -@ The gradient and Hessian of L with respect to -@ are:

m-@L = �
−1
I (-@ − -I) + B>

(
,̄ − y

)
H-@ L = �

−1
I + B> diag[,̄

′]B
(9)
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Gradient in �@ The gradient of (5) in �@ is more involved. The derivative of the term 1
2 {tr(�

−1
I �@) +

ln |�−1I �@ |} can be obtained using identities provided in The Matrix Cookbook. The derivative of 1>〈�() )〉
can be obtained by considering derivatives with respect to individual elements of �@ , and is 1

2B
> diag[_̄′]B.

Overall, we �nd that:
m�@L = 1

2

{
�
−1
I + �−>@ + B> diag[_̄′]B

}
. (10)

Hessian-vector product in �@ Since �@ is a matrix, the Hessian of (5) in �@ is a fourth-order tensor.
It is simpler to work with the Hessian-vector product. Here, the “vector” is a covariance matrix M to be
optimized. The Hessian-vector product is given by the following identity:

〈H�@
,M〉 = m�@ 〈J�@ ,M〉 = m�@ tr

[
J>
�@
M

]
(11)

where 〈·, ·〉 denotes the scalar (Frobenius) product. The Hessian-vector product for the terms �−1I + �−>@ in
(10) can be obtained using identities provided in The Matrix Cookbook:

m�@ tr
[{
�
−1
I + �−>@

}>
M

]
= −�−1@ M>�−1@ . (12)

The Hessian-vector product for the term B> diag[_̄′]B in (10) is more complicated. We can write

m�@ tr
[{
B> diag[_̄′]B

}>M]
= m�@ tr

[
BMB> diag[_̄′]

]
= B> diag[BMB>] diag

[
mf2

)
〈d ′() )〉

]
B.

(13)

The �rst step in (13) uses the fact that the trace is invariant under cyclic permutations. The second step
follows from Lemma 1 (Appendix, below), with C = BMB> and using the fact that _̄′ = 〈d ′(\ )〉. In general,
the Hessian-vector product in �@ is

〈H�@
,M〉 = 1

2

{
−�−1@ M>�−1@ + B> diag[BMB>] diag

[
mf2

)
〈d ′() )〉

]
B
}

(14)

For the exponential �ring-rate nonlinearity, mf2
)
〈d ′() )〉 = 1

2 _̄. The solution for the probit �ring-rate non-
linearity is given in (8).

0.0.5 Conclude

That’s all for now! I’ll need to integrate these with the various other derivations (e.g. see also here.).
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0.0.6 Appendix

Lemma 1 (We use Einstein summation to simplify the notation)

m�@,8 9 tr [C diag [〈5 () )〉]] = m�@,8 9 [C diag [〈5 () )〉]]::
= m�@,8 9

[
C;< diag [〈5 () )〉]<=

]
::

= m�@,8 9
[
C:: diag [〈5 () )〉]:

]
= C:: 〈m�@,8 9 5 (\: )〉
= C::B>8: mf2

\
〈5 (\: )〉B: 9

= B>
8:
C:: mf2

\
〈5 (\: )〉B: 9

=

{
B> diag[C] diag

[
mf2

)
〈5 () )〉

]
B
}
8 9

m�@ tr [C diag [〈5 () )〉]] = B> diag[C] diag
[
mf2

)
〈5 () )〉

]
B

(15)
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