Derivatives of Gaussian KL-Divergence for some parameterizations of the posterior covariance for variational Gaussian-process inference

M. Rule

March 25, 2020

These notes provide the derivatives of the KL-divergence $D_{KL} [Q(z) || P(z)]$ between two multivariate Gaussian distributions $Q(z)$ and $P(z)$ with respect to a few parameterizations θ of the covariance matrix $\Sigma(\theta)$ of Q. This is useful for variational Gaussian process inference, where clever parameterizations of the posterior covariance are required to make the problem tractable. Tables for differentiating matrix-valued functions can be found in [The Matrix Cookbook.](https://www2.imm.dtu.dk/pubdb/pubs/3274-full.html)

Consider two multivariate Gaussian distributions $Q(z) = \mathcal{N}(\mu_q, \Sigma(\theta))$ and $P(z) = \mathcal{N}(\mu_q, \Sigma_0 = \Lambda^{-1})$ with dimension L. The KL divergence $D_{\text{KL}}[Q(z)||P(z)]$ [has the closed form](https://en.wikipedia.org/wiki/Multivariate_normal_distribution#Kullback%E2%80%93Leibler_divergence)

$$
\mathcal{D} := D_{\text{KL}} [Q(\mathbf{z}) || \Pr(\mathbf{z})]
$$

= $\frac{1}{2} \left\{ (\boldsymbol{\mu}_0 - \boldsymbol{\mu}_q)^{\top} \boldsymbol{\Lambda} (\boldsymbol{\mu}_0 - \boldsymbol{\mu}_q) + \text{tr} (\boldsymbol{\Lambda} \boldsymbol{\Sigma}) - \ln |\boldsymbol{\Sigma}| - \ln |\boldsymbol{\Lambda}| \right\} + \text{constant.}$ (1)

In variational Bayesian inference, we minimize $\mathcal D$ while maximizing the expected log-probability of some observations with respect to $Q(z)$. Closed-form derivatives of D in terms of the parameters of Q are useful for manually optimizing code for larger problems. The derivatives of ${\cal D}$ in terms of $\pmb{\mu}_q$ are straightforward: $\partial_{\mu_a} \mathcal{D} = \Lambda(\mu_a - \mu_z)$ and $H_{\mu_a} \mathcal{D} = \Lambda$. In these notes, we explore derivatives of \mathcal{D} with respect to a few different parameterizations ($\overset{a}{\theta}$) of $\Sigma(\theta)$.

We evaluate the following parameterizations for Σ : 1. Optimizing the full Σ directly 2. $\Sigma \approx XX^{\top}$ 3. $\Sigma \approx A^{\top}$ diag[v] A 4. $\Sigma \approx [\Lambda + \text{diag}[p]]^{-1}$ 5. $F^{\top}QQ^{\top}F$, where $Q \in \mathbb{R}^{K \times K}$, $K < L$ and $F \in \mathbb{R}^{K \times L}$, $FF^{\top} = I$.

$0.1 \quad \Sigma$

We first obtain gradients of D in Σ (assuming Σ is full-rank). These can be used to derive gradients in θ for some parameterizations $\Sigma(\theta)$ using the chain rule. The gradient of D in Σ can be obtained using identities (57) and (100) in The Matrix Cookbook:

$$
\partial_{\Sigma} \mathcal{D} = \partial_{\Sigma} \{ \text{tr} (\Lambda \Sigma) - \ln |\Sigma| \}
$$

= $\frac{1}{2} (\Lambda - \Sigma^{-1}).$ (2)

The Hessian in Σ is a fourth-order tensor. It's simpler to express the Hessian in terms of a Hessian-vector product, which can be used with [Krylov subspace](https://en.wikipedia.org/wiki/Krylov_subspace) solvers to efficiently compute the update in Newton's method. Considering an $L\times L$ matrix M, the Hessian-vector product is given by

$$
\left[\mathbf{H}_{\Sigma}\mathcal{D}\right]\mathbf{M}=\partial_{\Sigma}\left\langle\partial_{\Sigma}\mathcal{D},\mathbf{M}\right\rangle=\partial_{\Sigma}\operatorname{tr}\left[\left(\partial_{\Sigma}\mathcal{D}\right)^{\top}\mathbf{M}\right],\tag{3}
$$

where $\langle \cdot, \cdot \rangle$ denotes the scalar (Frobenius) product. This is given by identity (124) in the Matrix Cookbook:

$$
\partial_{\Sigma} \operatorname{tr} \left[\frac{1}{2} \left(\boldsymbol{\Lambda} - \boldsymbol{\Sigma}^{-1} \right)^{\top} \boldsymbol{\mathrm{M}} \right] = -\frac{1}{2} \partial_{\Sigma} \operatorname{tr} \left[\boldsymbol{\Sigma}^{-1} \boldsymbol{\mathrm{M}} \right] = \frac{1}{2} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mathrm{M}}^{\top} \boldsymbol{\Sigma}^{-1}.
$$
 (4)

$0.2 \quad \Sigma \approx XX^{\top}$

We consider an approximate posterior covariance of the form

$$
\Sigma \approx XX^{\top}, \quad X \in \mathbb{R}^{L \times K} \tag{5}
$$

where X is a rank- $K < L$ matrix with L rows and K columns.

Since X is not full rank, the log-determinant $\ln |\Sigma| = \ln |XX^{\top}|$ in [\(1\)](#page-0-0) diverges, due to the zero eigenvalues in the null space of X. However, since this null-space is not being optimized, it does not affect our gradient. It is sufficient to replace the log-determinant with that of the reduced-rank representation, $\ln |X^{\top}X|$. Identity (55) in The Matrix Cookbook provides the derivative of this, $\partial_X \ln |X^{\top}X| = 2X^{+ \top}$, where $(\cdot)^+$ is the pseudoinverse. Combined with identity (112), this gives the following gradient of $\mathcal{D}(X)$:

$$
\partial_{\mathbf{X}} \mathcal{D} = \partial_{\mathbf{X}} \frac{1}{2} \left\{ \text{tr} \left[\mathbf{\Lambda} \mathbf{X} \mathbf{X}^{\top} \right] - \ln |\mathbf{X}^{\top} \mathbf{X}| \right\} = \mathbf{\Lambda} \mathbf{X} - \mathbf{X}^{+ \top}.
$$
 (6)

The Hessian-vector product requires the derivative of ∂_X tr $[X^+M]$:

$$
\partial_{\mathbf{X}} \langle \partial_{\Sigma} \mathcal{D}, \mathbf{M} \rangle = \partial_{\mathbf{X}} \operatorname{tr} \left[\left(\mathbf{\Lambda} \mathbf{X} - \mathbf{X}^{+^{\top}} \right)^{\top} \mathbf{M} \right] = \partial_{\mathbf{X}} \operatorname{tr} \left[\mathbf{\Lambda} \mathbf{X} \mathbf{M} \right] - \partial_{\mathbf{X}} \operatorname{tr} \left[\mathbf{X}^{+} \mathbf{M} \right]. \tag{7}
$$

Goulob and Pereya (1972) Eq. 4.12 gives the derivative of a fixed-rank pseudoinverse:

$$
\partial X^{+} = -X^{+}(\partial X)X^{+} + X^{+}X^{+T}(\partial X)^{T}(1 - XX^{+}) + (1 - X^{+}X)(\partial X)^{T}X^{+T}X^{+}
$$
(8)

Since X is $N \times K$ with rank K, X⁺X is full-rank. Therefore $X^+X = I_k$ and the final term in (??) vanishes. The derivative of the pseudoinverse can now be written as:

$$
\partial \mathbf{X}^+ = -\mathbf{X}^+ (\partial \mathbf{X}) \mathbf{X}^+ + \mathbf{X}^+ \mathbf{X}^{+ \top} (\partial \mathbf{X})^\top (\mathbf{I}_n - \mathbf{X} \mathbf{X}^+) \tag{9}
$$

Since the derivative of a trace of a matrix-valued function is just the (transpose) of the scalar derivative,

$$
\partial_X \operatorname{tr} \left[\mathbf{X}^+ \mathbf{M} \right] = \left\{ -\mathbf{X}^+ \mathbf{M} \mathbf{X}^+ + \mathbf{X}^+ \mathbf{X}^{+ \top} \mathbf{M}^\top (\mathbf{I}_n - \mathbf{X} \mathbf{X}^+) \right\}^\top \n= -\mathbf{X}^{+ \top} \mathbf{M}^\top \mathbf{X}^{+ \top} + (\mathbf{I} - \mathbf{X}^{+ \top} \mathbf{X}^\top) \mathbf{M} \mathbf{X}^+ \mathbf{X}^{+ \top}.
$$
\n(10)

Overall, we obtain the following Hessian-vector product:

$$
\partial_X \langle \partial_{\Sigma} \mathcal{D}, \mathbf{M} \rangle = \mathbf{\Lambda} \mathbf{M}^{\top} + \mathbf{X}^{+ \top} \mathbf{M}^{\top} \mathbf{X}^{+ \top} - (\mathbf{I} - \mathbf{X}^{+ \top} \mathbf{X}^{\top}) \mathbf{M} \mathbf{X}^{+} \mathbf{X}^{+ \top}
$$
(11)

0.2.1 $\Sigma = XX^{\top}$ when X is full-rank

Equations [\(6\)](#page-1-0) and [\(11\)](#page-1-1) are also valid if X is a rank-L triangular (Choleskey) factorization of Σ . In this case the pseudoinverse can be replaced by the full inverse, and various terms simplify:

$$
\partial_{\mathbf{X}} \mathcal{D} = \Lambda \mathbf{X} - \mathbf{X}^{-\top} \n\partial_{\mathbf{X}} \langle \partial_{\mathbf{x}} \mathcal{D}, \mathbf{M} \rangle = \Lambda \mathbf{M}^{\top} + \mathbf{X}^{-\top} \mathbf{M}^{\top} \mathbf{X}^{-\top}
$$
\n(12)

0.3 $\Sigma = A^{\top} \text{diag}[v]A$

Let $\Sigma = A^\top$ diag[v]A, where A is fixed and $v \in \mathbb{R}^L$ are free parameters. Define diag[\cdot] as an operator that constructs a diagonal matrix from a vector, or extracts the main diagonal from a matrix if its argument is a matrix. The gradient of D in **v** is:

$$
\partial_{\mathbf{X}} \mathcal{D} = \partial_{\mathbf{X}} \frac{1}{2} \left\{ \text{tr} \left[\mathbf{\Lambda} \mathbf{A}^{\top} \text{diag}[\mathbf{v}] \mathbf{A} \right] - \ln |\mathbf{A}^{\top} \text{diag}[\mathbf{v}] \mathbf{A}| \right\} \n= \frac{1}{2} \left\{ \text{diag} \left[\mathbf{A} \mathbf{\Lambda} \mathbf{A}^{\top} \right] - \frac{1}{\mathbf{v}} \right\}
$$
\n(13)

The hessian in v is a matrix in this case:

$$
H_v \mathcal{D} = \frac{1}{2} \operatorname{diag} \left[\frac{1}{v^2} \right]. \tag{14}
$$

This parameterization is useful for spatiotemporal inference problems, where the matrix A represents a fixed convolution which can be evaluated using the Fast Fourier Transform (FFT).

0.4 Inverse-diagonal approximation

Let $\Sigma^{-1} = \Lambda + \text{diag [p]}$. To obtain the gradient in p, combine the derivatives $\partial_{\Sigma} \mathcal{D}$ (Eq. [\(2\)](#page-0-1)) and $\partial_{p} \Sigma$ using the chain rule. If $\{(\Sigma)$ is a function of Σ , and $\Sigma(\theta_i)$ is a function of a parameter θ_i , then the chain rule is (The Matrix Cookbook; Eq. 136):

$$
\partial_{\theta_i} \{ = \langle \partial_{\Sigma} \{ , \partial_{\theta_i} \Sigma \rangle = \sum_{kl} (\partial_{\Sigma_{kl}} \{) (\partial_{\theta_i} \Sigma_{kl}) \} \tag{15}
$$

From [\(2\)](#page-0-1) we have $\partial_{\Sigma} \mathcal{D} = \frac{1}{2}$ $\frac{1}{2} (\Lambda - \Sigma^{-1})$; Since $\Sigma^{-1} = \Lambda + \text{diag} [p]$, this simplifies to:

$$
\partial_{\Sigma} \mathcal{D} = \frac{1}{2} \left(\mathbf{\Lambda} - \Sigma^{-1} \right)
$$

= $\frac{1}{2} \left(\mathbf{\Lambda} - \mathbf{\Lambda} - \text{diag} \left[\mathbf{p} \right] \right)$
= $-\frac{1}{2} \text{diag} \left[\mathbf{p} \right]$ (16)

We also need $\partial_{p_i} \Sigma$. Let $Y = \Sigma^{-1}$. The derivative ∂Y^{-1} is given as identity (59) in The Matrix Cookbook as $\partial Y^{-1} = -Y^{-1}(\partial Y)Y^{-1}$. Using this, we can obtain $\partial_{p_i} \Sigma$:

$$
\partial_{p_i} \Sigma = \partial_{p_i} Y^{-1} = -Y^{-1} \left(\partial_{p_i} Y \right) Y^{-1} = -\Sigma \left(\partial_{p_i} \Sigma^{-1} \right) \Sigma
$$

= $-\Sigma \partial_{p_i} \left[\Lambda + \text{diag} \left[p_i \right] \right] \Sigma = -\Sigma J_{ii} \Sigma$
= $-\sigma_i \sigma_i^{-T}$ (17)

where σ_i is the i^{th} row of Σ and \mathbf{J}_{ii} is a matrix which is zero everywhere, except for at index (i,i) , where it is 1.

Applying [\(15\)](#page-2-0) to [\(16\)](#page-2-1) and [\(17\)](#page-2-2) for a particular element p_i gives:

$$
\partial_{\mathbf{p}_i} \mathcal{D} = \sum_{kl} [\partial_{\Sigma_{kl}} \mathcal{D}] [\partial_{\mathbf{p}_i} \Sigma_{kl}] = \sum_{kl} \left\{ -\frac{1}{2} \operatorname{diag} [\mathbf{p}] \right\}_{kl} \left\{ -\sigma_i \sigma_i^{\top} \right\}_{kl}
$$

$$
= \frac{1}{2} \sum_{kl} \delta_{k=l} \mathbf{p}_k \sigma_{ik} \sigma_{il} = \frac{1}{2} \sum_{k} \mathbf{p}_k \sigma_{ik} \sigma_{ik} = \frac{1}{2} \sum_{k} \mathbf{p}_k \sigma_{ik}^2
$$
(18)
$$
= \frac{1}{2} \mathbf{p} \sigma_i^{\circ 2}
$$

where $(\cdot)^{\circ}$ denotes the element-wise square of a vector or matrix. In matrix notation, this is:

$$
\partial_{\mathbf{p}} \mathcal{D} = \frac{1}{2} \mathbf{p} \Sigma^{\circ 2} = \frac{1}{2} \operatorname{diag} \left[\Sigma \operatorname{diag} \left[\mathbf{p} \right] \Sigma \right],\tag{19}
$$

The Hessian-vector product is cumbersome, since each term in the expression Σ (diag [p]) Σ depends on p. In the case of the log-linear Poisson GLM, the gradient (??) simplies further and optimization becomes tractable. We will explore this further in later notes.

This parameterization resembles the closed-form covariance update for a linear, Gaussian model, where $1/p$ is a vector of measurement noise variances. It is also a useful parameterization for variational Bayesian solutions for non-conjugate Generalized Linear Models (GLMs), where p becomes a free parameter to be estimated.

0.5 $\Sigma = F^{\top}QQ^{\top}F$

Let $\Sigma = \mathrm{F}^\top \mathrm{Q} \mathrm{Q}^\top \mathrm{F}$, where $\mathrm{Q} \in \mathbb{R}^{K \times K}; K{<}L$ is the free parameter and $\mathrm{F} \in \mathbb{R}^{K \times L}$ is a fixed transformation. If Q is a lower-triangular matrix, then this approximation involves optimizing $K(K+1)/2$ parameters.

Since the trace is invariant under cyclic permutation, tr $[{\Lambda}F^{\top}QQ^{\top}F]=$ tr $[FAF^{\top}QQ^{\top}]$. The derivatives have the same form as [\(12\)](#page-2-3) with $\tilde{\mathbf{\Lambda}} = \mathbf{F} \mathbf{\Lambda} \mathbf{F}^\top$:

$$
\partial_{Q} \mathcal{D} = \tilde{\Lambda} Q - Q^{-T}
$$

= $\mathbf{F} \Lambda \mathbf{F}^{\top} Q - Q^{-T}$

$$
\partial_{Q} \langle \partial_{Q} \mathcal{D}, \mathbf{M} \rangle = \tilde{\Lambda} \mathbf{M}^{\top} + Q^{-T} \mathbf{M}^{\top} Q^{-T}
$$

= $\mathbf{F} \Lambda \mathbf{F}^{\top} \mathbf{M}^{\top} + Q^{-T} \mathbf{M}^{\top} Q^{-T}$ (20)

This form is convenient for spatiotemporal inference problems that are sparse in frequency space. In this application, F corresponds a (unitary) Fourier transform with all by K of the resulting frequency components discarded. The product of F with a vector v can be computed in $O[L\log(L)]$ time using the Fast Fourier Transform (FFT). Alternatively, if $K \leq O(\log(L))$, it is faster to simply multiply Fy directly. Furthermore, if F is semi-orthogonal (FF $^\top$ = I), then calculation of $\texttt{F}^\top\texttt{Q}$ can be re-used (for example diag[Σ] = [($\mathbf{F}^{\top} \mathbf{Q}$)^{o2}]^{\top}1).

0.6 Conclusion

These notes provide the gradients and Hessian-vector products for four simplified parameterizations of the posterior covariance matrix for variational Gaussian process inference. If combined with the gradients

and Hessian-vector products for the expected log-likelihood, these expressions can be used with Krylovsubspace solvers to compute the Newton-Raphson update to optimize Σ .

We evaluated the following parameterizations for Σ : 1. Σ :

$$
\partial = \frac{1}{2} \left(\mathbf{\Lambda} - \mathbf{\Sigma}^{-1} \right)
$$

$$
\partial \langle \partial, \mathbf{M} \rangle = \frac{1}{2} \mathbf{\Sigma}^{-1} \mathbf{M}^{\top} \mathbf{\Sigma}^{-1}
$$
(21)

2. $\Sigma \approx XX^{\top}$:

$$
\partial = \Lambda X - X^{+T}.
$$

\n
$$
\partial \langle \partial, M \rangle = \Lambda M^{T} + X^{+T} M^{T} X^{+T} - (I - X^{+T} X^{T}) M X^{+} X^{+T}
$$
\n(22)

3. $\Sigma \approx A^{\top} \text{diag}[v] A$:

$$
\partial = \frac{1}{2} \left\{ \text{diag} \left[\mathbf{A} \mathbf{\Lambda} \mathbf{A}^{\top} \right] - \frac{1}{v} \right\}
$$

$$
\partial \left\langle \partial, \mathbf{u} \right\rangle = \frac{1}{2} \left[\frac{1}{v^2} \right]^{\top} \mathbf{u}
$$
 (23)

4. $\Sigma \approx [\Lambda + \text{diag}[p]]^{-1}$:

$$
\partial = \frac{1}{2} \mathbf{p} \Sigma^{\circ 2} = \frac{1}{2} \operatorname{diag} \left[\Sigma \operatorname{diag} \left[\mathbf{p} \right] \Sigma \right],\tag{24}
$$

5. $F^{\top}QQ^{\top}F$:

$$
\partial = \mathbf{F} \Lambda \mathbf{F}^{\top} \mathbf{Q} - \mathbf{Q}^{-\top}
$$

\n
$$
\partial \langle \partial, \mathbf{M} \rangle = \mathbf{F} \Lambda \mathbf{F}^{\top} \mathbf{M}^{\top} + \mathbf{Q}^{-\top} \mathbf{M}^{\top} \mathbf{Q}^{-\top}
$$
\n(25)

In future notes, we will consider the full derivatives required for variational latent Gaussian-process inference for the Poisson and probit generalized linear models.