
Derivatives of Gaussian KL-Divergence for some
parameterizations of the posterior covariance for variational

Gaussian-process inference
M. Rule

March 25, 2020

These notes provide the derivatives of the KL-divergence �KL [& (z)‖% (z)] between two multi-
variate Gaussian distributions & (z) and % (z) with respect to a few parameterizations \ of the
covariance matrix �(\) of & . This is useful for variational Gaussian process inference, where
clever parameterizations of the posterior covariance are required to make the problem tractable.
Tables for di�erentiating matrix-valued functions can be found in The Matrix Cookbook.

Consider two multivariate Gaussian distributions & (z) = N(-@ , �(\)) and % (z) = N(-0, �0 = �
−1) with

dimension !. The KL divergence �KL [& (z)‖% (z)] has the closed form

D :=�KL [& (z)‖ Pr(z)]

= 1
2

{
(-0 − -@)>�(-0 − -@)

+ tr (��) − ln |�| − ln |�|} + constant.

(1)

In variational Bayesian inference, we minimizeD while maximizing the expected log-probability of some
observations with respect to& (z). Closed-form derivatives ofD in terms of the parameters of& are useful
for manually optimizing code for larger problems. The derivatives ofD in terms of -@ are straightforward:
m-@D = �(-@ − -I) and H-@ D = �. In these notes, we explore derivatives of D with respect to a few
di�erent parameterizations (“\”) of �(\).

We evaluate the following parameterizations for �: 1. Optimizing the full � directly 2. � ≈ XX> 3.
� ≈ A> diag[v]A 4. � ≈ [� + diag[p]]−1 5. F>QQ>F, where Q ∈ R × , <! and F ∈ R ×! , FF> = I.

0.1 �

We �rst obtain gradients ofD in � (assuming � is full-rank). These can be used to derive gradients in \ for
some parameterizations �(\) using the chain rule. The gradient ofD in � can be obtained using identities
(57) and (100) in The Matrix Cookbook:

m�D = m� {tr (��) − ln |�|}
= 1

2
(
� − �−1

)
.

(2)

The Hessian in � is a fourth-order tensor. It’s simpler to express the Hessian in terms of a Hessian-vector
product, which can be used with Krylov subspace solvers to e�ciently compute the update in Newton’s
method. Considering an !×! matrix M, the Hessian-vector product is given by

1

https://www2.imm.dtu.dk/pubdb/pubs/3274-full.html
https://en.wikipedia.org/wiki/Multivariate_normal_distribution#Kullback%E2%80%93Leibler_divergence
https://en.wikipedia.org/wiki/Krylov_subspace

[H�D]M = m� 〈m�D,M〉 = m� tr
[
(m�D)>M

]
, (3)

where 〈·, ·〉 denotes the scalar (Frobenius) product. This is given by identity (124) in the Matrix Cookbook:

m� tr
[
1
2

(
� − �−1

)>M
]
= −1

2
m� tr

[
�
−1M

]
=
1
2
�
−1M>�−1. (4)

0.2 �≈XX>

We consider an approximate posterior covariance of the form

� ≈ XX>, X ∈ R!× (5)

where X is a rank- < ! matrix with ! rows and columns.

Since X is not full rank, the log-determinant ln |�| = ln |XX> | in (1) diverges, due to the zero eigenvalues
in the null space of X. However, since this null-space is not being optimized, it does not a�ect our gradi-
ent. It is su�cient to replace the log-determinant with that of the reduced-rank representation, ln |X>X|.
Identity (55) in The Matrix Cookbook provides the derivative of this, mX ln |X>X| = 2X+>, where (·)+ is
the pseudoinverse. Combined with identity (112), this gives the following gradient of D(X):

mXD = mX
1
2
{
tr

[
�XX>

]
− ln |X>X|

}
= �X −X+>. (6)

The Hessian-vector product requires the derivative of mX tr [X+M]:

mX 〈m�D,M〉 = mX tr
[(
�X −X+>

)>
M

]
= mX tr [�XM] − mX tr

[
X+M

]
. (7)

Goulob and Pereya (1972) Eq. 4.12 gives the derivative of a �xed-rank pseudoinverse:

mX+ = −X+(mX)X+ +X+X+>(mX)>(1 −XX+) + (1 −X+X) (mX)>X+>X+ (8)

Since X is # × with rank , X+X is full-rank. Therefore X+X = I: and the �nal term in (??) vanishes.
The derivative of the pseudoinverse can now be written as:

mX+ = −X+(mX)X+ +X+X+>(mX)>(I= −XX+) (9)

Since the derivative of a trace of a matrix-valued function is just the (transpose) of the scalar derivative,

mX tr
[
X+M

]
=

{
−X+MX+ +X+X+>M>(I= −XX+)

}>
= −X+>M>X+> + (I −X+>X>)MX+X+>.

(10)

Overall, we obtain the following Hessian-vector product:

mX 〈m�D,M〉 = �M> +X+>M>X+> − (I −X+>X>)MX+X+> (11)

2

0.2.1 �=XX> when X is full-rank

Equations (6) and (11) are also valid if X is a rank-! triangular (Choleskey) factorization of �. In this case
the pseudoinverse can be replaced by the full inverse, and various terms simplify:

mXD = �X −X−>

mX 〈mxD,M〉 = �M> +X−>M>X−>
(12)

0.3 � = A> diag[v]A
Let � = A> diag[v]A, where A is �xed and v ∈ R! are free parameters. De�ne diag[·] as an operator that
constructs a diagonal matrix from a vector, or extracts the main diagonal from a matrix if its argument is
a matrix. The gradient of D in v is:

mXD = mX
1
2
{
tr

[
�A> diag[v]A

]
− ln |A> diag[v]A|

}
= 1

2
{
diag[A�A>] − 1

v

} (13)

The hessian in v is a matrix in this case:

HvD = 1
2 diag

[1
v2

]
. (14)

This parameterization is useful for spatiotemporal inference problems, where the matrix A represents a
�xed convolution which can be evaluated using the Fast Fourier Transform (FFT).

0.4 Inverse-diagonal approximation

Let �−1 = � + diag [p]. To obtain the gradient in p, combine the derivatives m�D (Eq. (2)) and mp� using
the chain rule. If {(�) is a function of �, and �(\8) is a function of a parameter \8 , then the chain rule is
(The Matrix Cookbook; Eq. 136):

m\8 { =
〈
m�{, m\8�

〉
=

∑
:;

(m�:; {)(m\8�:;) (15)

From (2) we have m�D = 1
2
(
� − �−1

)
; Since �

−1 = � + diag [p], this simpli�es to:

m�D = 1
2
(
� − �−1

)
= 1

2 (� − � − diag [p])
= − 1

2 diag [p]
(16)

We also need mp8�. Let Y = �
−1. The derivative mY−1 is given as identity (59) in The Matrix Cookbook as

mY−1 = −Y−1(mY)Y−1. Using this, we can obtain mp8�:

mp8� = mp8 Y
−1 = −Y−1

(
mp8 Y

)
Y−1 = −�

(
mp8�

−1)
�

= −�mp8 [� + diag[p8]] � = −�J88�
= −2 82>8

(17)

3

where 2 8 is the 8th row of � and J88 is a matrix which is zero everywhere, except for at index (8 , 8), where
it is 1.

Applying (15) to (16) and (17) for a particular element p8 gives:

mp8D =
∑
:;

[m�:;D][mp8�:;] =
∑
:;

{
− 1

2 diag [p]
}
:;

{
−2 82>8

}
:;

= 1
2

∑
:;

X:=;p:2 8:2 8; = 1
2

∑
:

p:2 8:2 8: = 1
2

∑
:

p:22
8:

= 1
2p2◦28

(18)

where (·)◦2 denotes the element-wise square of a vector or matrix. In matrix notation, this is:

mpD = 1
2p�◦2 = 1

2 diag [� diag [p] �] , (19)

The Hessian-vector product is cumbersome, since each term in the expression � (diag [p]) � depends on
p. In the case of the log-linear Poisson GLM, the gradient (??) simpli�es further and optimization becomes
tractable. We will explore this further in later notes.

This parameterization resembles the closed-form covariance update for a linear, Gaussian model, where
1/p is a vector of measurement noise variances. It is also a useful parameterization for variational Bayesian
solutions for non-conjugate Generalized Linear Models (GLMs), where p becomes a free parameter to be
estimated.

0.5 � = F>QQ>F

Let � = F>QQ>F, where Q ∈ R × ; <! is the free parameter and F ∈ R ×! is a �xed transformation. If
Q is a lower-triangular matrix, then this approximation involves optimizing (+ 1)/2 parameters.

Since the trace is invariant under cyclic permutation, tr [�F>QQ>F] = tr [F�F>QQ>]. The derivatives
have the same form as (12) with �̃ = F�F>:

mQD = �̃Q −Q−>

= F�F>Q −Q−>

mQ
〈
mQD,M

〉
= �̃M> +Q−>M>Q−>

= F�F>M> +Q−>M>Q−>

(20)

This form is convenient for spatiotemporal inference problems that are sparse in frequency space. In
this application, F corresponds a (unitary) Fourier transform with all by of the resulting frequency
components discarded. The product of F with a vector v can be computed in O[! log(!)] time using
the Fast Fourier Transform (FFT). Alternatively, if ≤ O(log(!)), it is faster to simply multiply Fv di-
rectly. Furthermore, if F is semi-orthogonal (FF> = I), then calculation of F>Q can be re-used (for example
diag[�] = [(F>Q)◦2]>1).

0.6 Conclusion

These notes provide the gradients and Hessian-vector products for four simpli�ed parameterizations of
the posterior covariance matrix for variational Gaussian process inference. If combined with the gradients

4

and Hessian-vector products for the expected log-likelihood, these expressions can be used with Krylov-
subspace solvers to compute the Newton-Raphson update to optimize Σ.

We evaluated the following parameterizations for �: 1. �:

m = 1
2
(
� − �−1

)
m 〈m,M〉 = 1

2
�
−1M>�−1

(21)

2. � ≈ XX>:

m = �X −X+>.
m 〈m,M〉 = �M> +X+>M>X+> − (I −X+>X>)MX+X+>

(22)

3. � ≈ A> diag[v]A:

m = 1
2
{
diag[A�A>] − 1

v

}
m 〈m, u〉 = 1

2
[1

v2
]> u

(23)

4. � ≈ [� + diag[p]]−1:

m = 1
2p�◦2 = 1

2 diag [� diag [p] �] , (24)

5. F>QQ>F:

m = F�F>Q −Q−>

m 〈m,M〉 = F�F>M> +Q−>M>Q−>
(25)

In future notes, we will consider the full derivatives required for variational latent Gaussian-process in-
ference for the Poisson and probit generalized linear models.

5

	{\boldsymbol\Sigma}
	{\boldsymbol\Sigma}{\approx}{\mathbf X}{{\mathbf X}^{\top}}
	{\boldsymbol\Sigma}{=}{\mathbf X}{{\mathbf X}^{\top}} when \mathbf X is full-rank

	{\boldsymbol\Sigma}=\mathbf A^\top \operatorname{diag}[\mathbf v] \mathbf A
	Inverse-diagonal approximation
	{\boldsymbol\Sigma}=\mathbf F^\top \mathbf Q \mathbf Q^\top \mathbf F
	Conclusion

