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These notes provide the derivatives of the KL-divergence Dk, [Q(z)||P(z)] between two multi-
variate Gaussian distributions Q(z) and P(z) with respect to a few parameterizations 6 of the
covariance matrix X(0) of Q. This is useful for variational Gaussian process inference, where
clever parameterizations of the posterior covariance are required to make the problem tractable.
Tables for differentiating matrix-valued functions can be found in The Matrix Cookbook.

Consider two multivariate Gaussian distributions Q(z) = N (p,, X(6)) and P(z) = N (g, 2o = A™Y) with
dimension L. The KL divergence Dxr, [Q(z)||P(z)] has the closed form

D =Dk, [Q(2)|| Pr(z)]
=1 (o — 1) Aty — 1) M
+tr (AY) —In |X| — In |A|} + constant.

In variational Bayesian inference, we minimize 9 while maximizing the expected log-probability of some
observations with respect to Q(z). Closed-form derivatives of D in terms of the parameters of Q are useful
for manually optimizing code for larger problems. The derivatives of D in terms of y1,, are straightforward:
O, D = A(yq —p,) and Hy, D =A In these notes, we explore derivatives of O with respect to a few
different parameterizations (“0”) of X(6).

We evaluate the following parameterizations for X: 1. Optimizing the full X directly 2. ¥ ~ XX 3.
¥ ~ AT diag[v]A 4. X ~ [A +diag[p]]~! 5. FTQQTF, where Q € RX¥*X K<L and F € RX*L FFT = 1.

0.1 X

We first obtain gradients of 9 in ¥ (assuming ¥ is full-rank). These can be used to derive gradients in 8 for
some parameterizations X(6) using the chain rule. The gradient of D in X can be obtained using identities
(57) and (100) in The Matrix Cookbook:

95D = 05 {tx (A) ~In [2]) "
_1 -1

=1 (A-371).

The Hessian in X is a fourth-order tensor. It’s simpler to express the Hessian in terms of a Hessian-vector
product, which can be used with Krylov subspace solvers to efficiently compute the update in Newton’s
method. Considering an LXL matrix M, the Hessian-vector product is given by
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[Hy D] M = 35 (35D, M) = ds tr [(9xD) 'M], (3)

where (-, -) denotes the scalar (Frobenius) product. This is given by identity (124) in the Matrix Cookbook:
1 -1\ T 1 -1 o Tyt
dx tr 5(A—z ) M :—Eaztr[z M]:EZ M’z (4)

0.2 X~XXT
We consider an approximate posterior covariance of the form
T a XX, XeRPK (5)

where X is a rank-K < L matrix with L rows and K columns.

Since X is not full rank, the log-determinant In |X| = In |XX"| in (1) diverges, due to the zero eigenvalues
in the null space of X. However, since this null-space is not being optimized, it does not affect our gradi-
ent. It is sufficient to replace the log-determinant with that of the reduced-rank representation, In |X"X|.
Identity (55) in The Matrix Cookbook provides the derivative of this, dx In |[X"X| = 2X*T, where (-)* is
the pseudoinverse. Combined with identity (112), this gives the following gradient of D (X):

oxD = ox 1 {tr [AXX"] -In|X"X|} = AX - X*". (6)
The Hessian-vector product requires the derivative of dx tr [X*M]:
T
ox (3D, M) = ox tr [(AX— X+T) M] = ax tr [AXM] — ax tr [X*M] . )
Goulob and Pereya (1972) Eq. 4.12 gives the derivative of a fixed-rank pseudoinverse:

X = —XH(X)X + XX (0X)T (1 - XX*) + (1 - XTX) (9X) "X X+ (8)

Since X is N x K with rank K, X*X is full-rank. Therefore X*X = I} and the final term in (??) vanishes.
The derivative of the pseudoinverse can now be written as:

IX* = =X (X)X + XX (9X) T (I, — XXY) ®)

Since the derivative of a trace of a matrix-valued function is just the (transpose) of the scalar derivative,

ox tr [X*M] = {-X*MX* + XX TMT (I, - XX*)}

(10)
=-X""M' X" +(I-X"TXT)MXTXHT.
Overall, we obtain the following Hessian-vector product:
ox (sD,M) = AMT + X TMTX""T — (1-X"TXT)MX*X'T (11)



0.2.1 X=XX" when X is full-rank

Equations (6) and (11) are also valid if X is a rank-L triangular (Choleskey) factorization of X. In this case
the pseudoinverse can be replaced by the full inverse, and various terms simplify:

oxD =AX-XT
X (D,M)=AM" +X TM'X T

0.3 X =AT diag[v]A

Let X = AT diag[v]A, where A is fixed and v € Rl are free parameters. Define diag[-] as an operator that
constructs a diagonal matrix from a vector, or extracts the main diagonal from a matrix if its argument is
a matrix. The gradient of O in v is:

xD = 8X% {tr [AAT diag[v]A] —In|AT diag[V]A|}

= 1 {diag[AAAT] - 1} (13)

The hessian in v is a matrix in this case:

H, D = ; diag [ ] . (14)

This parameterization is useful for spatiotemporal inference problems, where the matrix A represents a
fixed convolution which can be evaluated using the Fast Fourier Transform (FFT).

0.4 Inverse-diagonal approximation

Let X~' = A + diag [p]. To obtain the gradient in p, combine the derivatives 9z (Eq. (2)) and 9pX using
the chain rule. If {(X) is a function of X, and X(6;) is a function of a parameter 0;, then the chain rule is
(The Matrix Cookbook; Eq. 136):

30,4 = (051, 0,%) = ) (95,00 (96,Zw1) (15)
kl
From (2) we have 95D = % (A- Z_l); Since X! = A + diag [p], this simplifies to:
D=} (A-27)
= 3 (A— A - diag [p]) (16)
= —3 diag [p]

We also need 9, X. Let Y = %!, The derivative dY~! is given as identity (59) in The Matrix Cookbook as
dY~' = —Y~1(9Y)Y ™. Using this, we can obtain d,,3:

aPiZ = aPiY_1 =-Y"! (aPiY) Y'=-% (apiz_l) b2
= —20p, [A+diag[p;]] T = -XJ;Z (17)

=-0;0]



where o; is the i row of ¥ and J;; is a matrix which is zero everywhere, except for at index (i, i), where
itis 1.

Applying (15) to (16) and (17) for a particular element p; gives:

O, D = %:[azklﬂ] [apizkl] = ; {_% diag [p]}kl {_o-io—l—'r}kl

1 1 1 2
=3 Z5k:lPk0ik0il =3 Zpkaikaik =3 Zpkdik (18)
xl % %
_ 1 o2
= 3P0,

where (-)°? denotes the element-wise square of a vector or matrix. In matrix notation, this is:

oD = 1px°? = 1 diag [Z diag [p] 2], (19)

2

The Hessian-vector product is cumbersome, since each term in the expression X (diag [p]) X depends on
p- In the case of the log-linear Poisson GLM, the gradient (??) simplifies further and optimization becomes
tractable. We will explore this further in later notes.

This parameterization resembles the closed-form covariance update for a linear, Gaussian model, where
1/p is a vector of measurement noise variances. It is also a useful parameterization for variational Bayesian
solutions for non-conjugate Generalized Linear Models (GLMs), where p becomes a free parameter to be
estimated.

05 X=F'QQ'F

Let ~ = FTQQTF, where Q € RK*K; K<L is the free parameter and F € RX*L is a fixed transformation. If
Q is a lower-triangular matrix, then this approximation involves optimizing K(K + 1)/2 parameters.

Since the trace is invariant under cyclic permutation, tr [AFTQQTF| = tr [FAFTQQT]. The derivatives
have the same form as (12) with A = FAFT:

D =AQ-Q7"
=FAF'Q-Q° '
9 (39D, M) =AM +Q""M'Q"
=FAFFM"+Q " M'Q "

This form is convenient for spatiotemporal inference problems that are sparse in frequency space. In
this application, F corresponds a (unitary) Fourier transform with all by K of the resulting frequency
components discarded. The product of F with a vector v can be computed in O[Llog(L)] time using
the Fast Fourier Transform (FFT). Alternatively, if K < O(log(L)), it is faster to simply multiply Fv di-
rectly. Furthermore, if F is semi-orthogonal (FF" = I), then calculation of FTQ can be re-used (for example
diag[>] = [(FTQ)|T1).

0.6 Conclusion

These notes provide the gradients and Hessian-vector products for four simplified parameterizations of
the posterior covariance matrix for variational Gaussian process inference. If combined with the gradients



and Hessian-vector products for the expected log-likelihood, these expressions can be used with Krylov-
subspace solvers to compute the Newton-Raphson update to optimize X.

We evaluated the following parameterizations for X: 1. X:

0=} (a-27)
1 21
9{(o,M) = 52‘1MT2‘1 @)
2. 2~ XXT:
9=AX-X"". 22)
d(o,M)=AMT + X TMTXTT — (I- XX )MXXH'
3. T ~ AT diag[v]A:
0 = 3 {diag[AAAT] - 1} 25)
T
d(@uy=3[%] u
4. ¥ ~ [A+diag[p]]~t:
0 = 1p=°? = 1 diag [X diag [p] 2], (24)
5. FFQQF:
0=FAF'Q-Q "
Q-Q (25)

0{(,M) =FAFM"+Q "™M'Q "

In future notes, we will consider the full derivatives required for variational latent Gaussian-process in-
ference for the Poisson and probit generalized linear models.
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