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These notes outline a stochastic binary neural network as a toymodel of the e�ects of noise on neu-
ral computation. We explore how noise modi�es the e�ective gain in linear-nonlinear networks,
and how oscillations might modulate some of the e�ects of noise.

Spiking responses in biological neural networks are variable: repeated presentations of the same stimu-
lus can trigger di�erent activity patterns. Some variability arises from the biological nature of neurons,
and some may relate to ongoing processing. Does the brain use this variability for computation? What
processes are available to modulate or attenuate variability? In these notes, we consider a mathematically
convenient model of variability in spiking neural networks. This allows us to explore how noise propa-
gates and a�ects computation. We explore two main phenomenon: the modulation of neuronal properties
by noise (“stochastic gain modulation”), and a role for network oscillations in attenuating the impact of
noise on neural computation.

0.0.1 1. Stochastic binary networks and the dichotomized Gaussian

In this section, we describe both deterministic and stochastic feed-forward binary neural networks, which
will serve as a model of neural computation.

Consider linear-nonlinear “neurons” (“units”), which take a vector of inputs G . These inputs are multi-
plied by a weights F , summed up, and passed through a nonlinearity 5 (sometimes called the “activation
function” or “transfer function”), to yield some output.

We �rst consider a deterministic binary unit, which uses the Heaviside step function � (G) for the non-
linearity (Fig. 1a). The binary output B ∈ {0, 1} is given by the expression B = � (F>G + 1), where 1 is
a bias parameter which sets the threshold. Multi-layer binary networks can compute Boolean functions
and solve basic classi�cation tasks (Fig. 1b). Such networks are a minimalist model of spike-based neural
computation, since the spikes that neurons use to communicate are all-or-nothing events.

Neurons in real biological neurons are a�ected by a multitude of unobserved processes that make spiking
stochastic (Faisal et al. 2008). To model this in a binary network, we make the spiking a Bernoulli variable
conditioned on some latent rate ? (Fig. 1c):

0 = F>G +1
? = 5 (0)
B ∼ Bernoulli(?),

(1)

where 5 is some nonlinearity with output ? ∈ [0, 1] between zero and one. We’ve also explicitly de�ned 0
as the net synaptic “activation” of the nonlinear unit, since treating this variable separately will be useful
in later derivations. Often, 5 is taken to be the logistic function 5 (0) = 1/(1 + 4−0).
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Figure 1: Binary neural networks with and without noise (a) A binary threshold unit
accepts inputs G , computes a weighted sum of these inputs F>G , and emits a “1” if this sum
exceeds an internal threshold 1, and “0” otherwise (b) Networks of these units can perform
simple binary classi�cation tasks. In this toy model, we initialized 50 random binary-threshold
features and identi�ed a hard classi�cation boundary via regression on these features. Points
indicate training data, colored according to class label. (c) We can introduce noise by mak-
ing the binary output a stochastic Bernoulli variable, in which each unit computes a “spiking
probability” ? , and emits a “1” with probability ? , and a “0” with probability 1− ? . (d) Stochas-
ticity in spiking makes the classi�er probabilistic. It also distorts the classi�cation boundaries.
Shown here is the original classi�cation boundary (black), and an estimate of the 50% classi-
�cation threshold from 5K samples from a stochastic network (blue).

This model amounts to a linear-nonlinear-Bernoulli model, and can be viewed as a discrete-time analogue
of the linear-nonlinear-Poisson models used in point-process modeling of spike trains (Truccolo et al. 2005,
Pillow et al. 2008, Truccolo 2010, 2016, Ostojic and Brunel 2011).

Noise in a binary network can can also disrupt computational properties, like the location of classi�cation
boundaries (Fig. 1d). This is due to the interaction of noise with �ring rate variability.

For example, consider a �ring-rate nonlinearity with positive curvature, say 5 (0) = exp(0). Nonlineari-
ties with positive curvature amplify positive �uctuations in 0 more than negative ones. The presence of
variability in 0 therefore increases the mean rate of the neuron, disrupting the function being computed.

A convenient model for stochastic binary neurons arises from considering a deterministic threshold unit
with some Gaussian noise a�ecting its spiking threshold (Fig. 2a). This is the “dichotomized Gaussian”
(DG) model (Pearson 1909, Emrich and Piedmonte 1991, Cox and Wermuth 2002), and has proven an elegant
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model for variability and correlations in spiking networks (Matthias and Berens 2008, Macke et al. 2009,
2011). In the dichotomized Gaussian model, variability in the spiking output arises from variability in the
e�ective threshold of the neuron (Fig 2b).

Figure 2: The dichotomized Gaussianmodel for stochastic binary neurons (a) One can
sample a Bernoulli random variably by drawing a Gaussian random variable, and emitting “1”
if it exceeds a threshold o , and “0” otherwise. (b) This is analogous to considering a determin-
istic (hard-threshold) binary unit, with some additional Gaussian noise a�ecting the threshold
value (c) Stochasticity in binary units can also be viewed as a result of unobserved inputs in
an otherwise deterministic threshold network. The unobserved inputs can make spiking ap-
pear to be stochastic, if only a limited number of inputs are observed. (d) One may model this
as a Bernoulli neuron, where the �ring probability ? is computed by �rst taking a weighted
sum of the inputs, applying some bias, and then passing it through a saturating nonlinearity
Φ(F>G +1), which is the cumulative distribution function of a standard Gaussian distribution.

So far, we have described stochasticity as an e�ect on the output, as if each unit �ips a (biased) coin to
decide whether to spike (emit a “1”) or not (emit a “0”). However, isolated neurons cab respond reliably
to injected current. Variability in biological neural networks may re�ect propagation of variability in
the inputs, the in�uence of unobserved inputs, and the result of stochastic synaptic transmission. One
may therefore also view stochastic binary “neurons” as deterministic threshold units, which receive some
unobserved, uncorrelated noise, leading to a stochastic threshold (Fig. 2c).

For the purposes of these notes, we model the noise b as coming from a standard normal distribution:

0 = F>G +1
B = � (0 + b)
b ∼ N(0, 1)

(2)
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Equivalently, one may interpret this as a Bernoulli neuron that uses the standard normal cumulative dis-
tribution function (CDF), Φ(0), as its �ring rate nonlinearity (Fig. 2d). This is analogous to a “Probit”
regression model:

0 = F>G +1
? = Φ(0)
B ∼ Bernoulli(?)

Φ(0) =
∫ 0

−∞(2c)
− 1

24−
D2
2 3D.

(3)

The standard-normal CDF is also a sigmoidal nonlinearity, and su�ciently similar to the logistic function
that they can be treated as approximations of each-other (with appropriate scaling of inputs). For simplic-
ity, we consider neurons with a Gaussian-CDF nonlinearity directly, rather than treating this model as an
approximation for neurons with a logistic nonlinearity.

0.0.2 2. Computing in stochastic binary networks

In this section, we explore the dichotomized Gaussian model of stochastic binary neural networks, which
lets us predict how noise a�ects computation. We also explore strategies for making computation robust
to noise.

2.1 Noise decreases gain in stochastic binary neurons Noise in the input to a nonlinear neuron can
cause a shift in the mean output (Fig. 3a). The in�uence of noise in a stochastic binary unit can be likened
to a decrease in the e�ective gain (steepness) of the nonlinear transfer function (Fig. 3b). For illustration,
consider a scenario in which the neuronal inputs (and therefore neuronal activation 0 ∼ N(`0 ,f20)) are
themselves stochastic. This is equivalent to a scenario where the activation is deterministic, 0 = `0 , but
corrupted by additional noise a :

? = Φ(`0 + a)
a ∼ N(0,f20).

(4)

Intuitively, this additional variability “spreads out” the neuronal activation, which is equivalent to decreas-
ing the steepness (gain) of the transfer function.

Figure 3: Noise propagation in stochastic neurons with sigmoidal nonlinearity (a)
One can predict how much variability and noise is present in the output, given the covari-
ance structure of the inputs. This allows us to reason about how variability propagates to
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downstream neurons, and how it a�ects neural computation. (b) The in�uence of noise (or
input variability) can be modeled as a decrease in gain of the nonlinear transfer function. An-
alytic expressions for this change in gain are possible in the case of Gaussian noise and a
dichotomized-Gaussian neuron.

To see this analytically, consider the dichotomized Gaussian formulation of a stochastic neuron. Noise
sources include the intrinsic threshold noise b∼N(0, 1), as well as added noise arising from inputs
a∼N(0,f2), and so the total noise has variance 1 + f2. The Heaviside step function doesn’t change if
we rescale its input, so we can change variables and write:

B = � (0 + b + a)
= � (W0 + b)

W = 1/
√
1 + f2

⇒
? = Φ(W0)
B ∼ Bernoulli(?),

(5)

where the gain parameter W modulates the steepness of the sigmoidal nonlinearity. That is, the in�uence
of additional noise can be treated as a gain modulation (Fig. 3b). This amounts to a nonlinear Bernoulli
neuron where the �ring-rate nonlinearity is given by ?=Φ(W0), and provides an expression for the �rst
moment (mean) of the output, 〈B〉 = ? , in terms of the moments of the activation `,f2.

When the gain W is large, ? is almost always very close to 0 or very close to 1. In the limit where W → ∞,
we recover a deterministic binary neuron with a Heaviside step nonlinearity, limW→∞ Φ(W0) = � (0). In
the limit W → 0, spiking becomes completely stochastic (? = 0.5) and is unrelated to the input.

The high-gain limit highlights a useful phenomenon in stochastic binary neural networks: if neurons are
either strongly suppressed (?≈0), or driven to saturation (?≈1), then very little spiking noise is added, since
spiking becomes almost deterministic. Patterns of silence can therefore be as important as robust spiking,
for precise reliable neural coding (Schneidman et al. 2011). In section 3, we will use this property to show
how oscillatory drive might attenuate threshold noise.

There are physiological limits to how much one can increase gain (and therefore decrease noise). The neu-
ronal integration and spiking mechanisms are subject to thermal �uctuations, placing a lower limit on the
noise. We interpret b as a minimum noise �oor, and choose units such that b has unit variance. Noise also
arises from unreliable vesicle release in presynaptic terminals, which cannot be controlled by the postsy-
naptic neuron, and noise propagated from the inputs themselves cannot be attenuated independently of
the signal.

2.2 Training binary neural networks with noise Eliminating noise is challenging, and presumably
metabolically expensive. Could networks to learn to produce a target output without attenuating internal
�uctuations? Could noise itself be computationally useful? These questions have been reviewed in depth
elsewhere, but we brie�y revisit them here.

As we saw in the dichotomized Gaussian model, noise can transform a hard threshold into a soft, prob-
abilistic one, which allows for graded computations with binary units (Fig. 2). If hard nonlinearities are
easier or cheaper to build, noise could therefore provide an e�cient approach to constructing a smooth,
sigmoidal nonlinearity. This “softening” of the nonlinearity also allows one to train arti�cial neural net-
works that would not otherwise be amenable to conventional approaches.
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Noise may also be useful in neural networks that perform statistical sampling. In this scenario, the output
of the network is inherently variable, and this variability re�ects statistical uncertainty about the encoded
quantities (e.g. Echeveste et al. 2019).

In binary neural networks, the slope of the e�ective nonlinearity depends on the magnitude of the input
noise (Fig. 3). Such noise-mediated gain modulation could be computationally useful, as it allows another
mode of nonlinear interaction between neurons.

Figure 4: Re-training a neural network for noise (a) We trained a deterministic network
to reproduce a target scalar function of one variable. Units were deterministic with a sigmoidal
nonlinearity. There were 50 hidden units and a single readout neuron. (b) The deterministic
network fails if spiking noise is added. The mean output of the trained output is shown in
yellow, and the shaded region represents the trained output variability ±1f , estimated via
Monte-Carlo sampling. (c) Adjusting the gain and bias of the readout neuron to restore the
statistics of spiking input rescues the original computation. (d) Learning can also compensate
for the e�ects of noise on computation. Here, we trained a linear-nonlinear-Bernoulli (LNB)
network by maximizing the likelihood of the data under a dichotomized-Gaussian moment
approximation. (e) The moment representation allowed backpropagation of errors to optimize
the input features of the network (20 features, mean activations plotted here). (f) If the noise
is removed from the re-trained network, performance again degrades. Correct operation of
the circuit now requires noise.

In Figure 4, we illustrate the importance of modeling noise when training stochastic binary networks. The
output of a deterministic network with a sigmoidal nonlinearity (Fig. 4a) breaks down when spiking noise
is added (Fig. 4b).

For a single neuron, this disruption is well-modeled by a noise-induced change in gain. It is therefore
possible to partially rescue the original computation by homeostatically adjusting the synaptic gains to
compensate for noise (Fig. 4c).
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If the same network is trained in the presence of noise, the correct mean output occurs despite intrinsic
spiking �uctuations (Fig. 4c). To train in the presence of noise, we used form of backpropagation based on
moment approximations of dichotomized Gaussian neurons. This allowed the network to learn input-layer
features based on the output error (Fig. 4e).

Computations learned in the presence of nose are sensitive to changes in the statistics of said noise. If the
threshold noise is removed from our stochastic neural network, the computed function is altered (Fig. 4f).
If threshold noise is used for computation, one might therefore expect regulatory mechanism to stabilize
the amount of noise in the network.

0.0.3 3. Could oscillations moderate neuronal variability?

So far, we have demonstrated that the impact of noise on computation can be viewed as a noise-related
disruption in the transfer functions of single neurons. If the statistics of noise are predictable, networks
can learn to be robust to noise. Homeostatic mechanisms might confer additional robustness, if the rate
of change in noise statistics is gradual. Is it possible to cancel unexpected �uctuations in noise levels on
more rapid timescales?

One of the reasons homeostatic mechanisms are slow (and can only handle slow changes in the noise
statistics), is that each neuron must sample over extended periods of time to estimate its own mean and
variance. If every neuron could access this statistic instantaneously, rapid compensation for the e�ects of
noise on computation might be possible.

While such an instantaneous estimate of noise statistics would be impossible for a single neuron, neural
networks consist of vast numbers of interacting cells. Can we estimate instantaneous noise level from the
statistics of population activity? (This approach, of substituting a sample over time with a sample over
neurons, is loosely inspired by the work of Mastrogiuseppe, Ostijic, and colleagues.)

One candidate is the average rate of activity across a large population of neurons. For binary (and spiking)
neural networks, the mean population activity is equivalent to the sparsity in spiking activity. Homeostatic
mechanisms that detect and maintain a target level of sparsity might stabilize neural computations against
�uctuating noise statistics.

Inhibitory interneurons play a role in achieving stable levels of network activity, and also are responsi-
ble for oscillations. One might therefore conjecture that feedback about population activity level from
inhibitory cells, and the oscillations introduced by this feedback, could play a role in making computation
robust to noise.
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Figure 5: oscillatory drive can increase gain in a stochastic binary network (a) Oscilla-
tory drive can be viewed as a form of shared threshold variation. During the ascending phase
of an oscillation, neurons are released from inhibition. Those receiving more excitatory drive
will �re earlier. (b) If oscillatory drive is combined with inhibitory feedback, strongly-driven
(early-�ring) units inhibit weakly-activated neurons. (shaded colors indicate di�erent levels
of drive per neuron.) Here, we integrate the recent population activity, which is the average of
the spiking outputs “B”, and apply feedback inhibition so that the total number of spikes within
one oscillation cycle is conserved. (c) Firing rate during the ascending phase of an oscillation.
Colored curves re�ect neurons with di�erent levels of excitatory drive. Strongly-driven units
(blue) �re early, while weakly-driven ones (violet) �le late. Early-�ring units recruit inhibition,
which reduce the �ring of late-�ring ones. (d) Simulation of gain modulation due to oscilla-
tions and inhibitory feedback. We drive neurons with di�erent amounts of input activation
(sampled per neuron 0∼N(0, 1)), as well as a ramping drive. Each cell is refractory, and �res
at most once per oscillation. Feedback inhibition limits the population rate so that only 50%
of cells �re per oscillation cycle. The e�ective �ring-rate nonlinearity is measured via Monte-
Carlo simulation (50K replicas). (e) In this model, the biggest gain increase was observed for
neurons with an initial nonlinearity of ? = Φ (0/2)

To explore potential roles for oscillations in moderating neuronal noise, we �rst consider a toy model, of
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a population of dichotomized-Gaussian neurons in discrete time (Fig 5ab), during a single period of an
oscillation, modeled as an increasing ramping drive:

3 (C) = 30 + C · 3A
08 (C) = F>8 G +18 +3 (C)
?8 (C) = Φ(W008 (C)) · 6(C) ·

[
1 −∑C−1

0 B8 (C)
]

6(C) =
{
Amax − A (C) A (C) < Amax

0 elsewise

B8 (C) ∼ Bernoulli(? (C))
A (C) = ∑C−1

0 〈B8 (C)〉8
C ∈ [0,) ].

(6)

Here, 0(C), ? (C), and B (C) are time-dependent vectors representing the neuronal activation, spiking proba-
bilities, and spiking outputs, respectively. The activation 0 is a sum of the individual inputs,F>G +1, and
a shared drive 3 that increases over time. Parameters 30 and 3A control the initial value of the drive and
the rate at which it increases. Firing probabilities are taken as a nonlinear function activation, in this case
the CDF of the standard normal distribution Φ, with an additional (constant) gain parameter W0.

The �ring probabilities are multiplied by a gating term 6(C), which limits the total average �ring rate per
oscillation cycle to be lest than Amax ∈ [0, 1]. The exact form of this cuto� is not important, only that it
terminate activity once a certain number of neurons in the population have �red.

This gating can be interpreted as a form of inhibition, which integrates the population rate so far in each
oscillation cycle A (C) and provides inhibitory feedback. The time re�ects activity during the ascending
phase of oscillation, and ranges from 0 to ) . Each neuron is also refractory: spiking at most once per
oscillation, re�ected in the term 1 −∑C−1

0 B8 (C).

In this network, strongly activated neurons require little additional drive to �re, and �re early in the rising
phase of the oscillation. These spikes recruit inhibitory feedback that suppresses �ring of weakly-activated
neurons (Fig. 5bc). This interaction provides sharper contrast between strongly-driven and weakly-driven
cells, which e�ectively amounts to a higher-gain in the transfer function and a reduction in neuronal
variability. In simulation studies (Fig. 5e), we found that this e�ect could double the e�ective gain in some
scenarios.

How is this possible? At �rst, it might seem surprising that we can remove noise from spiking activity in
this way. After all, it is seldom possible to recover a lossless signal from one corrupted by noise. Noise
in the stochastic binary neurons considered here arises from a single phenomenon: variability close to
threshold.

Strongly driven or inhibited neurons are always far from threshold, and noise—whether it be from input,
threshold variability, or intrinsic sources, is irrelevant. We are then mainly concerned with with cells that
are slightly below (or above) threshold, which could be pushed to spike (or not) by extraneous inputs or
�uctuations.

When we simulate a population of stochastic binary neurons responding to a ramping drive, we sample
many repeated Bernoulli trials for each neuron. The activity over one sweep of the oscillation therefore
(indirectly) re�ects an average of many Bernoulli trials, and this allows us to remove some of the stochas-
ticity related to threshold noise. The rising sweep of activating drive (which may re�ect either excitation,
or removal or recovery from inhibition) ensures that neurons �re in order from most to least activated.

9



The global inhibitory mechanism ensures that (on average) cells with the top top k% of activating drive
are the ones that spike. This :-winners-take-all property has been explored extensively, as a generically
useful computation in neural networks (e.g. Maass 2000).

0.0.4 4. Continuous-time spiking models

So far, we explored noise in stochastic binary networks in terms of a Gaussian model of threshold variabil-
ity. In this model, we saw that noise could modulate �ring rate nonlinearities, which could be computa-
tionally useful if it could be controlled. We also saw that driving oscillations could control e�ective noise
levels.

We now consider a direct translation of discrete-time stochastic binary networks to continuous time Pois-
son spiking networks. The continuous time limit of a Bernoulli neuron is an inhomogeneous Poisson
point-process model. Such models have been used extensively in analysis of spiking neural data sets,
where they are terms auto-regressive Point-Process Generalized Linear Models (PP-GLMs). PP-GLMs are
a useful starting point for building models of neural dynamics, and represent a compromise between math-
ematical simplicity and biological realism (see Ostojic and Brunel (2011), Truccolo (2016) for a review).

In the PP-GLM framework, we divide each of the time-steps in the discrete-time Bernoulli model into
progressively smaller bins, preserving the average �ring rate. In the limit of in�nitesimal time bins, spiking
is represented by a time-varying rate _(C) ≈ ?C (Truccolo et al. 2005):

Pr(: spikes ∈ C . . . C + ΔC)

∼ Poisson
(∫ C+ΔC

C
_(C)3C

)
≈ ΔC · _(C)

_(C) = exp(0(C)).

(7)

The Poisson and Bernoulli models behave similarly at low �ring rates, but behave very di�erently at high
rates. In the Bernoulli case, �ring variability is suppressed for large rates, near ?≈1. For a Poisson process,
however, the variance grows linearly in time and with �ring rate.

We illustrate this in Figure 6, in which we take a Bernoulli network trained to model a target function (Fig.
4, Fig. 6a) and sample it in continuous time as a Poisson process (Fig. 6b). To match the continuous-time
Poisson model to the discrete time Bernoulli model, we equate one second to one time step, and interpret
the spiking probability ? as a �ring rate in Hz.

The larger variability of a Poisson process at high rates adds considerable noise to the output neuron (Fig.
6b). The more reliable behavior of the discrete-time Bernoulli model can be recovered, at least approxi-
mately, by including an absolute refractory period in the Poisson model (Fig. 6c). This refractory window
here is equal to one time-bin (one second in the units chosen here).
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Figure 6: Refractoriness attenuates variability in continuous-time models (a) We
trained a discrete-time Bernoulli model to generate a target function output, as in Figure 4.
(b) The spiking output exhibits excess variability in the continuous-time Poisson case, since
the Poisson model has large variance at high rates. (c) Adding an absolute refractory period
limits the spiking variability within a single refractory time-window, recovering the original
behavior. The nonlinearity in the refractory Poisson model di�ers from the ones used to train
the original network, so we have adjusted the gain and bias of the nonlinearity to recover the
original behaviot.

0.0.5 Conclude

In these notes, we have reviewed some implications for noise in simple models of neural computation.
We reviewed a simple model, Gaussian noise interacting with a binary threshold. We explored some toy
models for computational functions of noise (and correlations therein), including gain modulation and
gating of neural interactions based on noise correlation structures. We then examined how oscillations
would interact with threshold noise, and showed that oscillations with inhibition could attenuate noise.

Learning that occurs in the presence of noise can incorporate noise into the learned computation. This,
however, assumes that properties of noise remain stable over time. In some scenarios, homeostasis might
be able to provide this stability. On faster timescales, some computations, like K-winner-take-all (mediated
by population oscillations), might also provide a “normalizing” e�ect. This confers some robustness to
changing population statistics, and to some extent resembles the “batchnorm” procedure now widely used
in training ANNs. Limiting spike-timing variability (and thereby noise) via refractoriness and inhibition
is also important for attenuating variability and its impact on computations.
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