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Feed-forward neural networks consist of a series of layers. In each layer, outputs from past layers are
combined linearly, then passed through some nonlinear transformation. As long as all computations are
di�erentiable, the entire network is di�erentiable as well. This allows arti�cial neural networks to be
trained using gradient-based optimization techniques (backpropagation).

Methods for training stochastic networks via backpropagation are less well developed, but solutions exist
and are the subject of ongoing research (c.f. Rezende et al. 2014 and the numerous papers that cite it). In
the context of models of neural computation, Echeveste et al. (2019) trained stochastic neural networks
with recti�ed-polynomial nonlinearities.

One advantage of stochastic neural networks is that they allow a non-di�erentiable binary spiking net-
work to be treated as di�erentiable. Backpropagation with binary spiking networks ill-posed, because
the derivative of the hard-threshold (Heaviside step function) diverges. Deterministic binary networks are
typically trained using pseudogradient methods, in which the hard-threshold is replaced by a di�erentiable
soft-threshold when propagating gradients backwards.

However, in stochastic networks, it is possible for the moments of network activity (e.g. mean ` and co-
varaiance Σ) to be di�erentiable, even if the underlying activations are not. This opens up another avenue
for training binary networks using backpropagation.

Figure 1: training stochastic neural networks (a) Weighted sums over many inputs av-
erage together into a Gaussian variable (due to the central limit theorem), and samples from
the noisy network can be described in terms of their mean and covariance. (b) Instead of
mean �ring rates, one can propagate both means and covariances through the layers in a neu-
ral network, using moment approximations. This provides a di�erentiable representation of
stochastic binary networks that can be trained via backpropagation.
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One can use moment approximations to obtain di�erentiable models of how noise propagates in a neural
network. This is feasible if each neuron takes in a large number of inputs, so that the activation can be
modeled as Gaussian, despite the binary nature of spiking (Fig. 1a). A good example of this is in Echeveste
et al. (2019), which uses stochastic rate neurons with recti�ed polynomial nonlinearities.

For binary spiking networks, The dichotomized Gaussian (Macke et al 2011) provides convenient moment
approximations, which can be optimized via backpropagation (Fig. 1b).

The moment-backpropagation explored here would be impossible in a biological neural network, since it
requires the joint distribution of network activity. Generically, one might expect that if noise is present
during learning, then neurons will also learn to suppress and ignore this noise. This predicts that networks
trained in the presence of noise may also become dependent on this noise for their computational prop-
erties (Fig. 4def). In silico, this style of learning can be implemented by sampling an ensemble of frozen
noise trajectories, and di�erentiating the evolution of each of these (now deterministic) trajectories with
respect to the network parameters (Echeveste et al. 2019).

Learning in the presence of noise can allow neural networks to harness variability to perform useful com-
putation. For example, Echeveste et al. (2019) show that networks can learn to represent uncertainty by
sampling.

One caveat of this, however, is that networks trained to be robust to noise (or to harness it), may be
sensitive to �uctuating noise levels. A neural network that requires access to noise for sampling may fail
if that noise is removed, in much the same way that a deterministic network may fail when noise is added.

If noise is a constitutive component of neural computation, the brain must have mechanisms that stabilize
noise levels, or allow computations to function robustly throughout any physiological �uctuations in noise
levels.

Homeostasis in input-output statistics is observed in neurons, and is widely assumed to be necessary to
stabilize neural dynamics (Marder and Prinz 2002, Zenke et al. 2013, O’Leary et al. 2013, O’Leary and
Marder 2016, Zenke and Gerstner 2017, O’Leary 2018). One way to mitigate the e�ect of noise might be to
use homeostasis to stabilize the input-output statistics of single neurons (Fig 2).

Figure 2: Homeostatic approaches to noise-robustness (a) Changes in noise statistics
interact with nonlinearities, and a�ect the (average) transfer function of neurons. (b) If noise
statistics are consistent over time, we can detect and correct for distortion in transfer functions
in single neurons, using local homeostatic plasticity.
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