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Consider a stochastic, binray, linear-nonlinear unit, with spiking output B , synaptic inputs x, weights w,
and bias (threshold) 1:

B ∼ Bernoulli[? = Φ(0)]
0 = w>x +1,

(1)

where Φ(·) is the cumulative distribution function of a standard normal distribution. Note that Φ(·) can
be rescaled to closely approximate the logistic sigmoid if desired. Assuming the mean ` and covariance Σ
of x are known, can we obtain the mean and covariance of B?

0.0.1 The wrong way: A small-variance approximation

It is common to model the stochastic response in terms of the mean-�eld (deterministic) transfer function
Φ(0), plus a small correction assuming that the variance in 0 is small. This works acceptable for weakly-
nonlinear units, like Poisson, but fails for Bernoulli units.

One can approximate the variance of the spiking B output as the sum of the variance from the Bernoulli
sampling, and the variance in the Bernoulli rate itself. The variance of a Bernoulli variable is ? (1− ?), and
the variance in ? itself can be obtained from a locally-linear Gaussian approximation as the variance of
the activation, multiplied by the slope of the e�ective transfer function 5 ′(`0):

f2B = ? (1 − ?) + 5 ′(`0)2 · f20 (2)

This approximation is convenient, and works for generic nonlinearities (not just Φ(0)). More generally,
we can use the linear-Gaussian approximation to estimate the covariance (ΣB ) of a population of output
neurons driven by shared (noisy) inputs:

`B = 5 (,`G + �)
ΣB = �ΣG �

> +&
� = mG` (〈G〉)
& = Diag [` (G) (1 − ` (G))] ,

(3)

Where , denotes a matrix of input weights, � denotes a vector of per-unit biases, and ®̀(G) re�ects a
(mean-�eld estimate) of the vector of output mean-rates.
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This approximation arises from a locally-linear approximation of the nonlinear transfer function 5 , which
transforms correlated inputs ΣG according to the jacobian � of the �ring-rate nonlinearity. This also in-
cludes a Gaussian (di�usive) approximation of the noise arising from Bernoulli sampling,& , which is equal
to ? (1 − ?). A similar result holds for the Poisson (low �ring-rate limit), for which & = Diag[ ®̀(G)]ΔC .

Additional corrections can be added, for example accounting for the e�ect of variance on ®̀(G) for esti-
mating the noise source term & , or providing additional corrections based on higher-order moments or
moment-closure approximations thereof.

Similar locally-quadratic approximations for noise have been advanced in the context of chemical reaction
networks (Ale et al. 2013). Rule and Sanguinetti (2018) and Rule et al (2019) use this approach in spiking
neuron models, and Keeley et al. (2019) explored spiritually similar quadratic approximations for point-
processes.

The small-variance correction is essentially the �rst term in a family of series expansions, which use the
Taylor expansion of the �ring-rate nonlinearity to capture how noise is transformed from inputs to outputs.
In the case of linear-nonlinear-Bernoulli neurons, approximations based on series expansions like this have
poor convergence. Polynomial approximations to Φ diverge as the activation becomes very large or very
small, whereas the sigmoidal nonlinearity is bounded. Global approximations are therefore desirable when
the variance of the input is large.

0.0.2 A better way: Dichotomized Gaussian (probit) moment approximation

Global approximations have been presented elsewhere for other types of �ring nonlinearity. Echeveste et
al. (2019) used exact solutions for propagation of moments for recti�ed-polynomial nonlinearities (Hen-
nequin and Lengyel 2016). Rule and Sanguinetti (2018) also illustrate an example with exponential nonlin-
earities.

These approaches fall under the umbrella of “moment-based methods”, and entail solving for the propa-
gation of means and correlations under some distributional anstaz (often Gaussian, although see Byrne et
al. 2019 for an important application using circular distributions). In general, there are few guarantees of
accuracy for these methods (Schnoerr et al. 2014, 2015, 2017), although they are often empirically useful.

Moment approximations fair poorly for the linear-nonlinear-Bernoulli neuron. However, when one takes
the �ring-rate nonlinearity to be the CDF of the standard normal distribution, global approximations are
possible. This yields suitable approximations for other sigmoidal nonlinearities, provided that these non-
linearities can be approximated by the normal CDF under a suitable change of variables.

The variance and covariances in a population of dichotomized Gaussian neurons can be expressed in terms
of the multivariate normal CDF. To derive the population covariance, consider a single entry which re�ects
the covariance between a pair units.

Σ12 = 〈(B1 − ?1) (B1 − ?2)〉
= 〈B1B2〉 − ?1?2

〈B1B2〉 = Pr(B1 = B2 = 1)
(4)

If 0 = F>G + 1 is the activation, and D = 0 + b is the activity combined with zero-mean unit-variance
threshold noise b , we can evaluate 〈B1B2〉 by considering the joint distribution of D1 and D2 as Gaussian
(for a numerical recipe see Drezner and Wesolowsky 1989; numerical implementations are provided in
standard computing packages, e.g. Matlab or Scipy in Python):
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〈B1B2〉 = Pr(D1 > 0 and D2 > 0).
D ∼ N(`D , ΣD)
`D = `0

ΣD = Σ0 + I .

(5)

A numerical solution in terms of the bivariate Gaussian CDF is useful for propagating activity, but chal-
lenging for building a di�erentiable model suitable for optimization. However, practical approximations
exist.

0.0.3 Faster approximations to dichotomized Gaussian moment approximation

For a single neuron, the mean and variance of the spiking output are those of a Bernoulli(?) distribution,
with probability ? = Pr(B = 1). The mean rate `B is equal to the probability of �ring (?), and the variance
f2B is equal to ? (1 − ?) (Fig a).

Binary spiking units with a Gaussian CDF nonlinearity Φ(·) can be modeled as a thresholded Gaussian
noise source. When this noise is above a certain threshold (−0), the unit emits a “1”, otherwise, a “0”. This
makes it easy to model the e�ect of additional noise (variance) in the synatpic activation “a”. This extra
noise simply sums with the existing Gaussian noise in the model of the stochastic spiking.

The spiking probability ? of a dichotomized-Gaussian unit being driven by noisy, Gaussian inputs can be
obtained by treating the e�ect of noise in activation (f20) as a decrease in gain:

0 ∼ N(`0 ,f20)
? = 〈Φ(0)〉 = Φ (W`0)

W =
1√

1 + f20
`B = ?

f2B = ? (1 − ?)

(6)

To see this in more depth, observe that the variance in the spiking output f2B is a combination of the average
spiking variance f2noise = 〈? (1 − ?)〉, plus whatever input noise in the �ring rate (f2? ) is passed through the
nonlinearity. In the dichotomized Gaussian model of a linear-nonlinear-Bernoulli neuron, we �nd that
f2B ≈ `? (1 − `?):
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f2noise = 〈? (1 − ?)〉
= 〈?〉 −

〈
?2

〉
= `? − (`2? + f2?)
= `? (1 − `?) − f2?

f? ≈ f0 · 〈m0Φ(0)〉
= f0 · m0 〈Φ(0)〉
= f0 · m0Φ(`0W)
= f0 · q (`0W) · W

f2B = f2? + f2noise

= f2? + [`? (1 − `?) − f2?]
= `? (1 − `?).

(7)

This generalizes to the multivariate case, and provides an approximation for how correlations in inputs
propagate to correlations in the output:

ΣB = Σ? + Σnoise

Σ? ≈ �Σ0 �>

Σnoise ≈ Diag[? (1 − ?) − f2?]
� = Diag [q (W`0) · W]
? = Φ(W`0),

W = (1 +Diag[Σ0])−
1
2

(8)

The accompanying �gure shows a toy example of variance approximation, using a network of three
neurons (Fig. b). Compared to the small-variance approximation, the approximation derived for the di-
chotomized Gaussian case provides a better approximation of the moments of the output, and accounts
for how noise in the input propagates to the output (Fig. c).
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Figure: variance propagation in the dichotomized Gaussian neuron (a) For a single
neuron, the e�ect of input variability (f20) can be viewed as a modulation of the gain of the
nonlinear transfer function. The output variance is then similar to that of a Bernoulli dis-
tribution. (b) In a feed-forward network of nonlinear stochastic neurons, noise propagates
to downstream neurons, a�ecting the computational properties of the circuit. (c) The output
(blue) of this circuit is stochastic, and noise in the �rst layer (black, red) propagates to the
output (left panel: Monte-Carlo samples, shaded = 5-95Cℎ percentile), but can be modeling in
a di�erentiable way using moment approximation. The small variance approximation (linear
noise approximation or LNA, in this case: middle ) loses some accuracy for small circuits,
since the is very little averaging to attenuate spiking noise. The moment approximation using
a dichotomized Gaussian (DG) model is more accurate (right).

5


	The wrong way: A small-variance approximation
	A better way: Dichotomized Gaussian (probit) moment approximation
	Faster approximations to dichotomized Gaussian moment approximation

