Inhibitory
$a_{ei}$
$a_{ii}$
$\tau_i$
$\theta_i$
$g_i$
$n_i$
$\sigma_i$
Excitatory
$a_{ee}$
$a_{ie}$
$\tau_e$
$\theta_e$
$g_e$
$n_e$
$\sigma_e$

Stimulus & time stepping
$\Delta t$
$A$
$T$
Lateral connectivity kernels
Flicker Presets
Other Presets
Simulation
This application relies on the HTML5 Canvas element and Javascript. If you have Javascript disabled, try re-enabling it for this page.

Flicker Phosphene Model

This is an implementation of the flicker-phosphene hallucination model in Javascript.

Three pattern forming regimes are available as preset buttons.

This page uses MathJax to render $\LaTeX$ equations. If equations are not rendering, the MathJax server may be down or blocked by your browser settings.

The E-cell firing rate is represented as yellow and the I-cell firing rate as blue.

©2015 Michael Rule all rights reserved
\[S(t) = A \cdot \operatorname{Heav}(\sin(2 \pi t / T) - 0.8)\] \[\tau_e \dot{U_e} = -U_e + f( a_{ee} \cdot K_e \star U_e - a_{ie} \cdot K_i \star U_i - \theta_e + g_e S(t) )\] \[\tau_i \dot{U_i} = -U_i + f( a_{ei} \cdot K_e \star U_e - a_{ii} \cdot K_i \star U_i - \theta_i + g_i S(t) )\] \[K_{e,i}(x)=\frac{1}{\sigma_{e,i} \sqrt{2\pi}}e^{\mid x \mid^2 / 2\sigma_{e,i}^2}\]