Inhibitory
$\tau_i$
$a_{ie}$
$\theta_i$
Excitatory
$\tau_e$
$a_{ee}$
$a_{ei}$
$\sigma_e$
$\theta_e$
Refractory
$\tau_a$
$\gamma_a$
$\beta_e$
Time stepping
$\Delta t$
Driving
$N_e$
Presets
E-cell firing rate ∈[0,1]
I-cell firing rate ∈[0,1]
E/I trajectories in phase spaceSteady-state adaptation
Firing Rate Red = E, Green = Ie
Adaptation Red = E, Green = I
E/I trajectories in phase spaceWithout adaptation
Click to start
Wilson-Cowan with diffusive coupling
Info details here. TODO.
Simulation
\[\tau_e \dot U_e = - U_e + f\left[ a_{ee} \left(\sigma_e \nabla^2 U_e + U_e \right) - a_{ei} U_i - \beta V_e - \theta_e
\right]\]
\[\tau_i \dot U_i = - U_i + f \left[ a_{ei} U_e - \theta_i \right]\]
\[\tau_a \dot V_e = (U_e - V_e) \cdot (\gamma H(U_a - U_e) + 1)\]